Skip to content

Latest commit

 

History

History
92 lines (73 loc) · 3.26 KB

homotopies-natural-transformations-large-precategories.lagda.md

File metadata and controls

92 lines (73 loc) · 3.26 KB

Homotopies of natural transformations in large precategories

module category-theory.homotopies-natural-transformations-large-precategories where
Imports
open import Agda.Primitive using (Setω)
open import category-theory.functors-large-precategories
open import category-theory.large-precategories
open import category-theory.natural-transformations-large-precategories
open import foundation.homotopies
open import foundation.identity-types
open import foundation.universe-levels

Idea

Two natural transformations α β : F ⇒ G are homotopic if for every object x there is an identity Id (α x) (β x).

In Setω the identity type is not available. If it were, we would be able to characterize the identity type of natural transformations from F to G as the type of homotopies of natural transformations.

Definition

module _
  {αC αD γF γG : Level  Level} {βC βD : Level  Level  Level}
  {C : Large-Precat αC βC} {D : Large-Precat αD βD}
  {F : functor-Large-Precat C D γF} {G : functor-Large-Precat C D γG}
  where

  htpy-natural-transformation-Large-Precat :
    (α β : natural-transformation-Large-Precat F G)  Setω
  htpy-natural-transformation-Large-Precat α β =
    {l : Level} (X : obj-Large-Precat C l) 
    ( obj-natural-transformation-Large-Precat α X) =
    ( obj-natural-transformation-Large-Precat β X)

Examples

Reflexivity homotopy

Any natural transformation is homotopic to itself.

module _
  {αC αD γF γG : Level  Level} {βC βD : Level  Level  Level}
  {C : Large-Precat αC βC} {D : Large-Precat αD βD}
  {F : functor-Large-Precat C D γF} {G : functor-Large-Precat C D γG}
  where

  refl-htpy-natural-transformation-Large-Precat :: natural-transformation-Large-Precat F G) 
    htpy-natural-transformation-Large-Precat α α
  refl-htpy-natural-transformation-Large-Precat α = refl-htpy

Concatenation of homotopies

A homotopy from α to β can be concatenated with a homotopy from β to γ to form a homotopy from α to γ. The concatenation is associative.

  concat-htpy-natural-transformation-Large-Precat :
    (α β γ : natural-transformation-Large-Precat F G) 
    htpy-natural-transformation-Large-Precat α β 
    htpy-natural-transformation-Large-Precat β γ 
    htpy-natural-transformation-Large-Precat α γ
  concat-htpy-natural-transformation-Large-Precat α β γ H K X =
    H X ∙ K X

  associative-concat-htpy-natural-transformation-Large-Precat :
    (α β γ δ : natural-transformation-Large-Precat F G)
    (H : htpy-natural-transformation-Large-Precat α β)
    (K : htpy-natural-transformation-Large-Precat β γ)
    (L : htpy-natural-transformation-Large-Precat γ δ) 
    {l : Level} (X : obj-Large-Precat C l) 
    ( concat-htpy-natural-transformation-Large-Precat α γ δ
      ( concat-htpy-natural-transformation-Large-Precat α β γ H K)
      ( L)
      ( X)) =
    ( concat-htpy-natural-transformation-Large-Precat α β δ
      ( H)
      ( concat-htpy-natural-transformation-Large-Precat β γ δ K L)
      ( X))
  associative-concat-htpy-natural-transformation-Large-Precat α β γ δ H K L X =
    assoc (H X) (K X) (L X)