Skip to content
/ pi-gen Public
forked from RPi-Distro/pi-gen

Image build tool for WLAN Pi RPi and CM4 based hardware

License

Notifications You must be signed in to change notification settings

WLAN-Pi/pi-gen

 
 

pi-gen

Tool used to create WLAN Pi OS images. Our current GitHub setup automatically builds a new image every day, or whenever new code is committed to the force-build branch.

To get more information on the complete build process used by pi-gen, please see https://github.com/RPi-Distro/pi-gen/blob/master/README.md. Here is a summary for most relevant details needed to customize the WLAN Pi OS image.

Dependencies

pi-gen runs on Debian-based operating systems. Currently it is only supported on either Debian Buster or Ubuntu Xenial and is known to have issues building on earlier releases of these systems. On other Linux distributions it may be possible to use the Docker build described below.

To install the required dependencies for pi-gen you should run:

apt-get install coreutils quilt parted qemu-user-static debootstrap zerofree zip \
dosfstools libarchive-tools libcap2-bin grep rsync xz-utils file git curl bc \
qemu-utils kpartx gpg

The file depends contains a list of tools needed. The format of this package is <tool>[:<debian-package>].

Getting started with building your images

Getting started is as simple as cloning this repository on your build machine. You can do so with:

git clone https://github.com/WLAN-Pi/pi-gen.git

Also, be careful to clone the repository to a base path NOT containing spaces. This configuration is not supported by debootstrap and will lead to pi-gen not running.

After cloning the repository, you can move to the next step and start configuring your build.

Config

Upon execution, build.sh will source the file config in the current working directory. This bash shell fragment is intended to set needed environment variables.

You can configure several build options in this file. See more config the options on: https://github.com/RPi-Distro/pi-gen/blob/master/README.md#config

The config file can also be specified on the command line as an argument the build.sh or build-docker.sh scripts.

./build.sh -c myconfig

This is parsed after config so can be used to override values set there.

This can help when making local changes that you don't want to merge officially.

How the build process works

The following process is followed to build images:

  • Loop through all of the stage directories in alphanumeric order

  • Move on to the next directory if this stage directory contains a file called "SKIP"

  • Run the script prerun.sh which is generally just used to copy the build directory between stages.

  • In each stage directory loop through each subdirectory and then run each of the install scripts it contains, again in alphanumeric order. These need to be named with a two digit padded number at the beginning. There are a number of different files and directories which can be used to control different parts of the build process:

    • 00-run.sh - A unix shell script. Needs to be made executable for it to run.

    • 00-run-chroot.sh - A unix shell script which will be run in the chroot of the image build directory. Needs to be made executable for it to run.

    • 00-debconf - Contents of this file are passed to debconf-set-selections to configure things like locale, etc.

    • 00-packages - A list of packages to install. Can have more than one, space separated, per line.

    • 00-packages-nr - As 00-packages, except these will be installed using the --no-install-recommends -y parameters to apt-get.

    • 00-patches - A directory containing patch files to be applied, using quilt. If a file named 'EDIT' is present in the directory, the build process will be interrupted with a bash session, allowing an opportunity to create/revise the patches.

  • If the stage directory contains files called "EXPORT_NOOBS" or "EXPORT_IMAGE" then add this stage to a list of images to generate

  • Generate the images for any stages that have specified them

It is recommended to examine build.sh for finer details.

Docker Build

Docker can be used to perform the build inside a container. This partially isolates the build from the host system, and allows using the script on non-debian based systems (e.g. Fedora Linux). The isolate is not complete due to the need to use some kernel level services for arm emulation (binfmt) and loop devices (losetup).

To build:

vi config         # Edit your config file. See above.
./build-docker.sh

If everything goes well, your finished image will be in the deploy/ folder. You can then remove the build container with docker rm -v pigen_work

If something breaks along the line, you can edit the corresponding scripts, and continue:

CONTINUE=1 ./build-docker.sh

To examine the container after a failure you can enter a shell within it using:

sudo docker run -it --privileged --volumes-from=pigen_work pi-gen /bin/bash

After successful build, the build container is by default removed. This may be undesired when making incremental changes to a customized build. To prevent the build script from remove the container add

PRESERVE_CONTAINER=1 ./build-docker.sh

There is a possibility that even when running from a docker container, the installation of qemu-user-static will silently fail when building the image because binfmt-support must be enabled on the underlying kernel. An easy fix is to ensure binfmt-support is installed on the host machine before starting the ./build-docker.sh script (or using your own docker build solution).

Stage Anatomy

WLAN Pi Stage Overview

The build of Raspbian is divided up into several stages for logical clarity and modularity. This causes some initial complexity, but it simplifies maintenance and allows for more easy customization.

  • Stage 0 - bootstrap. The primary purpose of this stage is to create a usable filesystem. This is accomplished largely through the use of debootstrap, which creates a minimal filesystem suitable for use as a base.tgz on Debian systems. This stage also configures apt settings and installs raspberrypi-bootloader which is missed by debootstrap. The minimal core is installed but not configured, and the system will not quite boot yet.

  • Stage 1 - truly minimal system. This stage makes the system bootable by installing system files like /etc/fstab, configures the bootloader, makes the network operable, and installs packages like raspi-config. At this stage the system should boot to a local console from which you have the means to perform basic tasks needed to configure and install the system. This is as minimal as a system can possibly get, and its arguably not really usable yet in a traditional sense yet. Still, if you want minimal, this is minimal and the rest you could reasonably do yourself as sysadmin.

  • Stage 2 - lite system. This stage produces the Raspbian-Lite image. It installs some optimized memory functions, sets timezone and charmap defaults, installs fake-hwclock and ntp, wireless LAN and bluetooth support, dphys-swapfile, and other basics for managing the hardware. It also creates necessary groups and gives the pi user access to sudo and the standard console hardware permission groups.

    There are a few tools that may not make a whole lot of sense here for development purposes on a minimal system such as basic Python and Lua packages as well as the build-essential package. They are lumped right in with more essential packages presently, though they need not be with pi-gen. These are understandable for Raspbian's target audience, but if you were looking for something between truly minimal and Raspbian-Lite, here's where you start trimming.

  • Stage wlanpi 0 - base WLAN Pi packages. This stage installs the base packages for the WLAN Pi customization. Generating an image here is not expected nor tested.

  • Stage wlanpi 1 - full WLAN Pi customization. This stage completes the WLAN Pi customization setup, configuring services, permissions and several other system level customization.

  • Stage wlanpi hwtest - include HW tests. This stage installs packages needed to run hardware tests on the WLAN Pi Pro board. This is mainly inteded for factory tests to ensure the boards are funcitonal before shipping. This stage is not built by default - add wlanpi_hwtest to STAGE_LIST on config file to build its image.

  • Stage 3/4/5 - desktop/full image. Those stages are used by Raspbian to create the desktop and full image. Since WLAN Pi isn't supposed to be used as a full desktop system, those stages are not used.

Skipping stages to speed up development

If you're working on a specific stage the recommended development process is as follows:

  • Add a file called SKIP_IMAGES into the directories containing EXPORT_* files (currently wlanpi1 and wlanpi_hwtest)
  • Run build.sh to build all stages
  • Add SKIP files to the earlier successfully built stages
  • Modify the last stage
  • Rebuild just the last stage using sudo CLEAN=1 ./build.sh
  • Once you're happy with the image you can remove the SKIP_IMAGES files and export your image to test

Troubleshooting

64 Bit Systems

Please note there is currently an issue when compiling with a 64 Bit OS. See RPi-Distro#271

binfmt_misc

Linux is able execute binaries from other architectures, meaning that it should be possible to make use of pi-gen on an x86_64 system, even though it will be running ARM binaries. This requires support from the binfmt_misc kernel module.

You may see the following error:

update-binfmts: warning: Couldn't load the binfmt_misc module.

To resolve this, ensure that the following files are available (install them if necessary):

/lib/modules/$(uname -r)/kernel/fs/binfmt_misc.ko
/usr/bin/qemu-arm-static

You may also need to load the module by hand - run modprobe binfmt_misc.

Contributing

Got some improvements or fixes you'd like to see in the image? Please feel free to open an issue and pull request. We have some general guidelines on Contributing.

If in doubt, open an issue anyway and let's discuss it!

About

Image build tool for WLAN Pi RPi and CM4 based hardware

Resources

License

Code of conduct

Stars

Watchers

Forks

Languages

  • Shell 98.7%
  • Other 1.3%