Skip to content

Xilinx/xilinx-tiny-cnn

Repository files navigation

tiny-cnn: A header only, dependency-free deep learning framework in C++11

Xilinx changes from original tiny-cnn:

  • added batchnorm layer (currently feedforward only, no training)
  • support for offloaded layer
  • interleave layer
  • binarized layers
Linux/Mac OS Windows
Build Status Build status

tiny-cnn is a C++11 implementation of deep learning. It is suitable for deep learning on limited computational resource, embedded systems and IoT devices.

see Wiki Pages for more info.

Features

  • fast, without GPU
    • with TBB threading and SSE/AVX vectorization
    • 98.8% accuracy on MNIST in 13 minutes training (@Core i7-3520M)
  • header only
    • Just include tiny_cnn.h and write your model in c++. There is nothing to install.
  • small dependency & simple implementation
  • can import caffe's model

Comparison with other libraries

tiny-cnn caffe Theano TensorFlow
Prerequisites Nothing(Optional:TBB,OpenMP) BLAS,Boost,protobuf,glog,gflags,hdf5, (Optional:CUDA,OpenCV,lmdb,leveldb etc) Numpy,Scipy,BLAS,(optional:nose,Sphinx,CUDA etc) numpy,six,protobuf,(optional:CUDA,Bazel)
Modeling By C++ code Config File Python Code Python Code
GPU Support No Yes Yes Yes
Installing Unnecessary Necessary Necessary Necessary
Windows Support Yes No* Yes No*
Pre-Trained Model Yes(via caffe-converter) Yes No* No*

*unofficial version is available

Supported networks

layer-types

  • fully-connected layer
  • convolutional layer
  • average pooling layer
  • max-pooling layer
  • contrast normalization layer
  • dropout layer
  • linear operation layer

activation functions

  • tanh
  • sigmoid
  • softmax
  • rectified linear(relu)
  • leaky relu
  • identity
  • exponential linear units(elu)

loss functions

  • cross-entropy
  • mean-squared-error

optimization algorithm

  • stochastic gradient descent (with/without L2 normalization and momentum)
  • stochastic gradient levenberg marquardt
  • adagrad
  • rmsprop
  • adam

Dependencies

Minimum requirements

Nothing.All you need is a C++11 compiler.

Requirements to build sample/test programs

OpenCV

Build

tiny-cnn is header-ony, so there's nothing to build. If you want to execute sample program or unit tests, you need to install cmake and type the following commands:

cmake .

Then open .sln file in visual studio and build(on windows/msvc), or type make command(on linux/mac/windows-mingw).

Some cmake options are available:

options description default additional requirements to use
USE_TBB Use Intel TBB for parallelization OFF* Intel TBB
USE_OMP Use OpenMP for parallelization OFF* OpenMP Compiler
USE_SSE Use Intel SSE instruction set ON Intel CPU which supports SSE
USE_AVX Use Intel AVX instruction set ON Intel CPU which supports AVX
BUILD_TESTS Build unist tests OFF -**
BUILD_EXAMPLES Build example projects ON -

*tiny-cnn use c++11 standard library for parallelization by default **to build tests, type git submodule update --init before build

For example, type the following commands if you want to use intel TBB and build tests:

cmake -DUSE_TBB=ON -DBUILD_EXAMPLES=ON .

Customize configurations

You can edit include/config.h to customize default behavior.

Examples

construct convolutional neural networks

#include "tiny_cnn/tiny_cnn.h"
using namespace tiny_cnn;
using namespace tiny_cnn::activation;

void construct_cnn() {
    using namespace tiny_cnn;

    // specify loss-function and optimization-algorithm
    network<mse, adagrad> net;
    //network<cross_entropy, RMSprop> net;

    // add layers
    net << convolutional_layer<tan_h>(32, 32, 5, 1, 6) // 32x32in, conv5x5, 1-6 f-maps
        << average_pooling_layer<tan_h>(28, 28, 6, 2) // 28x28in, 6 f-maps, pool2x2
        << fully_connected_layer<tan_h>(14 * 14 * 6, 120)
        << fully_connected_layer<identity>(120, 10);

    assert(net.in_dim() == 32 * 32);
    assert(net.out_dim() == 10);
    
    // load MNIST dataset
    std::vector<label_t> train_labels;
    std::vector<vec_t> train_images;
    
    parse_mnist_labels("train-labels.idx1-ubyte", &train_labels);
    parse_mnist_images("train-images.idx3-ubyte", &train_images);
    
    // train (50-epoch, 30-minibatch)
    net.train(train_images, train_labels, 30, 50);
    
    // save
    std::ofstream ofs("weights");
    ofs << net;
    
    // load
    // std::ifstream ifs("weights");
    // ifs >> net;
}

construct multi-layer perceptron(mlp)

#include "tiny_cnn/tiny_cnn.h"
using namespace tiny_cnn;
using namespace tiny_cnn::activation;

void construct_mlp() {
    network<mse, gradient_descent> net;

    net << fully_connected_layer<sigmoid>(32 * 32, 300)
        << fully_connected_layer<identity>(300, 10);

    assert(net.in_dim() == 32 * 32);
    assert(net.out_dim() == 10);
}

another way to construct mlp

#include "tiny_cnn/tiny_cnn.h"
using namespace tiny_cnn;
using namespace tiny_cnn::activation;

void construct_mlp() {
    auto mynet = make_mlp<mse, gradient_descent, tan_h>({ 32 * 32, 300, 10 });

    assert(mynet.in_dim() == 32 * 32);
    assert(mynet.out_dim() == 10);
}

more sample, read examples/main.cpp or MNIST example page.

References

[1] Y. Bengio, Practical Recommendations for Gradient-Based Training of Deep Architectures. arXiv:1206.5533v2, 2012

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278-2324.

other useful reference lists:

License

The BSD 3-Clause License

Mailing list

google group for questions and discussions:

https://groups.google.com/forum/#!forum/tiny-cnn-users

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages