Skip to content
DeepFlux for Skeletons in the wild (CVPR 2019)
Branch: master
Clone or download
Latest commit 179dbbd Feb 27, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
cmake
docker init Nov 21, 2018
docs init Nov 21, 2018
examples/DeepFlux fix path Feb 27, 2019
include/caffe
matlab
python
scripts init Nov 21, 2018
src init Nov 21, 2018
tools init Nov 21, 2018
.Doxyfile
.gitignore
.travis.yml
CMakeLists.txt init Nov 21, 2018
CONTRIBUTING.md init Nov 21, 2018
CONTRIBUTORS.md init Nov 21, 2018
INSTALL.md
LICENSE
Makefile
Makefile.config.example
README.md
caffe.cloc

README.md

DeepFlux for Skeletons in the Wild

Introduction

The code and trained models of:

DeepFlux for Skeletons in the Wild, CVPR 2019 [Paper]

Citation

Please cite the related works in your publications if it helps your research:


@article{wang2018deepflux,
  title={DeepFlux for Skeletons in the Wild},
  author={Wang, Yukang and Xu, Yongchao and Tsogkas, Stavros and Bai, Xiang and Dickinson, Sven and Siddiqi, Kaleem},
  journal={arXiv preprint arXiv:1811.12608},
  year={2018}
}

Prerequisite

Usage

1. Install Caffe

cp Makefile.config.example Makefile.config
# adjust Makefile.config (for example, enable python layer)
make all -j16
# make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
make pycaffe

Please refer to Caffe Installation to ensure other dependencies.

2. Data and model preparation

# download datasets and pretrained model then
mkdir data && mv [your_dataset_folder] data/
mkdir models && mv [your_pretrained_model] models/
# data augmentation
cd data/[your_dataset_folder]
matlab -nodisplay -r "run augmentation.m; exit"

3. Training scripts

# an example on SK-LARGE dataset
cd examples/DeepFlux/
python train.py --gpu [your_gpu_id] --dataset sklarge --initmodel ../../models/VGG_ILSVRC_16_layers.caffemodel

4. Evaluation scripts

# an example on SK-LARGE dataset
cd evaluation/
./eval.sh ../../data/SK-LARGE/images/test ../../data/SK-LARGE/groundTruth/test ../../models/sklarge_iter_40000.caffemodel

Results and Trained Models

SK-LARGE

Backbone F-measure Comment & Link
VGG-16 0.732 CVPR submission [Google drive]
VGG-16 0.735 different_lr [Available soon]
ResNet-101 0.752 different_lr [Available soon]

SYM-PASCAL

Backbone F-measure Comment & Link
VGG-16 0.502 CVPR submission [Google drive]
VGG-16 0.558 different_lr [Available soon]
ResNet-101 0.584 different_lr [Available soon]

*different_lr means different learning rates for backbone and additional layers

*lambda=0.4, k1=3, k2=4 for all models

You can’t perform that action at this time.