Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
src
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

DeepFlux for Skeletons in the Wild

Introduction

The code and trained models of:

DeepFlux for Skeletons in the Wild, CVPR 2019 [Paper]

Citation

Please cite the related works in your publications if it helps your research:


@inproceedings{wang2019deepflux,
  title={DeepFlux for Skeletons in the Wild},
  author={Wang, Yukang and Xu, Yongchao and Tsogkas, Stavros and Bai, Xiang and Dickinson, Sven and Siddiqi, Kaleem},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={5287--5296},
  year={2019}
}

Prerequisite

Usage

1. Install Caffe

cp Makefile.config.example Makefile.config
# adjust Makefile.config (for example, enable python layer)
make all -j16
# make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
make pycaffe

Please refer to Caffe Installation to ensure other dependencies.

2. Data and model preparation

# download datasets and pretrained model then
mkdir data && mv [your_dataset_folder] data/
mkdir models && mv [your_pretrained_model] models/
# data augmentation
cd data/[your_dataset_folder]
matlab -nodisplay -r "run augmentation.m; exit"

3. Training scripts

# an example on SK-LARGE dataset
cd examples/DeepFlux/
python train.py --gpu [your_gpu_id] --dataset sklarge --initmodel ../../models/VGG_ILSVRC_16_layers.caffemodel

4. Evaluation scripts

# an example on SK-LARGE dataset
cd evaluation/
# inference with C++
./eval_cpp.sh ../../data/SK-LARGE/images/test ../../data/SK-LARGE/groundTruth/test ../../models/sklarge_iter_40000.caffemodel
# inference with Python
./eval_py.sh ../../data/SK-LARGE/images/test ../../data/SK-LARGE/groundTruth/test ../../models/sklarge_iter_40000.caffemodel

Results and Trained Models

SK-LARGE

Backbone F-measure Comment & Link
VGG-16 0.732 CVPR submission [Google drive]
VGG-16 0.735 different_lr [Google drive]

SYM-PASCAL

Backbone F-measure Comment & Link
VGG-16 0.502 CVPR submission [Google drive]
VGG-16 0.558 different_lr [Google drive]

*different_lr means different learning rates for backbone and additional layers

*lambda=0.4, k1=3, k2=4 for all models

About

DeepFlux for Skeletons in the wild (CVPR 2019)

Topics

Resources

License

Releases

No releases published

Packages

No packages published
You can’t perform that action at this time.