Skip to content

afriesen/ftprop

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deep Learning as a Mixed Convex-Combinatorial Optimization Problem

This repository contains the code for running the experiments in the paper "Deep Learning as a Mixed Convex-Combinatorial Optimization Problem" by Friesen & Domingos, ICLR 2018. (ICLR 2018 link) (arxiv link)

Specifically, it contains my implementation of mini-batch feasible target propagation (ftprop-mb) for training multiple different convnets with either step or staircase-like activation functions. Models can be learned using either a soft hinge loss or the saturating straight-through estimator (SSTE). See paper for details.

Dependencies

I ran this project in a conda virtual environment on Ubuntu 16.04 with CUDA 8.0. I've also (very briefly) tested it on Mac OS X. This project requires the following dependencies:

  • pytorch with torchvision. I built this from source from the current master at the time (pytorch revision 76a282d22880de9f37f17af31e40e18994fa9870, torchvision revision 88e81cea5795d80ed63bc68675b1989691801f57). Note that you need at least a fairly recent version of PyTorch (e.g., 0.3), which conda install does not provide.
  • tensorflow with tensorboard (This is not critical, however, and you can comment out all references to TF and TB if you don't want to install it)
  • setproctitle (e.g., via conda)
  • scipy

Running the experiments

There are a number of command-line arguments available, including

  • --tp-rule <TPRule_name>, specify the targetprop rule to use to train (e.g., SoftHinge, SSTE)
  • --nonlin <nonlinearity_name>, specify the nonlinearity to use in the network (e.g., step11, staircase3, relu, threshrelu)
  • --gpus <list_of_GPU_indices_separated_by_spaces>, specify the GPU(s) that this run should use for training + testing (supports data parallelization across multiple GPUs)
  • --nworkers <#workers>, the number of workers (i.e., threads) to use for loading data from disk
  • --data-root <path/to/imagenet>, for ImageNet only, specify the path to the ImageNet dataset
  • --no-cuda, specify this flag to run on CPU only
  • --resume <path/to/checkpoint>, resume training from a saved checkpoint
  • --no-save, specify this flag to disable any logging or checkpointing to disk
  • --download, specify this flag to download MNIST or CIFAR if it's not found
  • --no-val, specify this to NOT create a validation set and use that for testing (only use this for the final run!)
  • --plot-test, specify this to plot the test accuracy each iteration (only use this for the final run!)

Please see the code or run the file for a full list.

To reproduce the experiments from the paper, use the following commands:

4-layer convnet, CIFAR-10

# Step activation with FTP-SH
python3 train.py --ds=cifar10 --arch=convnet4 --wtdecay=5e-4 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=0.00025 --loss=crossent --nonlin=step11 --tp-rule=SoftHinge --nworkers=6 --plot-test --test-final-model --no-val --download

# Step activation with SSTE
python3 train.py --ds=cifar10 --arch=convnet4 --wtdecay=5e-4 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=0.00025 --loss=crossent --nonlin=step11 --tp-rule=SSTE --nworkers=6 --plot-test --test-final-model --no-val --download

# 2-bit quantized ReLU (staircase3) activation with FTP-SH
python3 train.py --ds=cifar10 --arch=convnet4 --wtdecay=5e-4 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=0.00025 --loss=crossent --nonlin=staircase3 --tp-rule=SoftHinge --nworkers=6 --plot-test --test-final-model --no-val --download

# 2-bit quantized ReLU (staircase3) activation with SSTE
python3 train.py --ds=cifar10 --arch=convnet4 --wtdecay=5e-4 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=0.00025 --loss=crossent --nonlin=staircase3 --tp-rule=SSTE --nworkers=6 --plot-test --test-final-model --no-val --download

# ReLU activation
python3 train.py --ds=cifar10 --arch=convnet4 --wtdecay=5e-4 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=0.00025 --loss=crossent --nonlin=relu --nworkers=6 --plot-test --test-final-model --no-val --download

# Thresholded-ReLU activation
python3 train.py --ds=cifar10 --arch=convnet4 --wtdecay=5e-4 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=0.00025 --loss=crossent --nonlin=threshrelu --nworkers=6 --plot-test --test-final-model --no-val --download

8-layer convnet, CIFAR-10

# Step activation with FTP-SH
python3 train.py --ds=cifar10 --arch=convnet8 --wtdecay=0.0005 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=1e-3 --loss=crossent --nonlin=staircase3 --tp-rule=SoftHinge --use-bn --nworkers=6 --plot-test --no-val --test-final-model --download

# Step activation with SSTE
python3 train.py --ds=cifar10 --arch=convnet8 --wtdecay=0.0005 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=1e-3 --loss=crossent --nonlin=staircase3 --tp-rule=SSTE --use-bn --nworkers=6 --plot-test --no-val --test-final-model --download

# 2-bit quantized ReLU (staircase3) activation with FTP-SH
python3 train.py --ds=cifar10 --arch=convnet8 --wtdecay=0.0005 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=1e-3 --loss=crossent --nonlin=staircase3 --tp-rule=SoftHinge --use-bn --nworkers=6 --plot-test --no-val --test-final-model --download

# 2-bit quantized ReLU (staircase3) activation with SSTE
python3 train.py --ds=cifar10 --arch=convnet8 --wtdecay=0.0005 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=1e-3 --loss=crossent --nonlin=staircase3 --tp-rule=SSTE --use-bn --nworkers=6 --plot-test --no-val --test-final-model --download

# ReLU activation
python3 train.py --ds=cifar10 --arch=convnet8 --wtdecay=0.0005 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=1e-3 --loss=crossent --nonlin=relu --use-bn --nworkers=6 --plot-test --no-val --test-final-model --download

# Thresholded-ReLU activation
train.py --ds=cifar10 --arch=convnet8 --wtdecay=0.0005 --lr-decay=0.1 --epochs 300 --lr-decay-epochs 200 250 --momentum=0.9 --opt=adam --lr=1e-3 --loss=crossent --nonlin=threshrelu --use-bn --nworkers=6 --plot-test --no-val --test-final-model --download

AlexNet (from DoReFa paper), ImageNet

Note: you must already have ImageNet downloaded to your computer to run these experiments. Also, I preprocessed the ImageNet images to scale them to 256x256 but this could also be done with a transformation when loading the dataset (you'll need to add this however).

# Step activation with FTP-SH
python3 train.py --ds=imagenet --arch=alexnet_drf --batch=128 --wtdecay=5e-6 --lr-decay=0.1 --epochs 80 --lr-decay-epochs 56 64 --momentum=0.9 --opt=adam --lr=1e-4 --loss=crossent --nonlin=step11 --tp-rule=SoftHinge --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# Step activation with SSTE
python3 train.py --ds=imagenet --arch=alexnet_drf --batch=128 --wtdecay=5e-6 --lr-decay=0.1 --epochs 80 --lr-decay-epochs 56 64 --momentum=0.9 --opt=adam --lr=1e-4 --loss=crossent --nonlin=step11 --tp-rule=SSTE --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# 2-bit quantized ReLU (staircase3) activation with FTP-SH
python3 train.py --ds=imagenet --arch=alexnet_drf --batch=128 --wtdecay=5e-5 --lr-decay=0.1 --epochs 80 --lr-decay-epochs 56 64 --momentum=0.9 --opt=adam --lr=1e-4 --loss=crossent --nonlin=staircase3 --tp-rule=SoftHinge --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# 2-bit quantized ReLU (staircase3) activation with SSTE
python3 train.py --ds=imagenet --arch=alexnet_drf --batch=128 --wtdecay=5e-5 --lr-decay=0.1 --epochs 80 --lr-decay-epochs 56 64 --momentum=0.9 --opt=adam --lr=1e-4 --loss=crossent --nonlin=staircase3 --tp-rule=SSTE --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# ReLU activation
python3 train.py --ds=imagenet --arch=alexnet_drf --batch=128 --wtdecay=5e-4 --lr-decay=0.1 --epochs 80 --lr-decay-epochs 56 64 --momentum=0.9 --opt=adam --lr=1e-4 --loss=crossent --nonlin=relu --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# Thresholded-ReLU activation
python3 train.py --ds=imagenet --arch=alexnet_drf --batch=128 --wtdecay=5e-4 --lr-decay=0.1 --epochs 80 --lr-decay-epochs 56 64 --momentum=0.9 --opt=adam --lr=1e-4 --loss=crossent --nonlin=threshrelu --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

ResNet-18, ImageNet

Note: you must already have ImageNet downloaded to your computer to run these experiments. Also, I preprocessed the ImageNet images to scale them to 256x256 but this could also be done with a transformation when loading the dataset (you'll need to add this however).

# Step activation with FTP-SH
python3 train.py --ds=imagenet --arch=resnet18 --batch=256 --wtdecay=5e-7 --lr-decay=0.1 --epochs 90 --lr-decay-epochs 30 60 --momentum=0.9 --opt=sgd --lr=0.1 --loss=crossent --nonlin=step11 --tp-rule=SoftHinge --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# Step activation with SSTE
python3 train.py --ds=imagenet --arch=resnet18 --batch=256 --wtdecay=5e-7 --lr-decay=0.1 --epochs 90 --lr-decay-epochs 30 60 --momentum=0.9 --opt=sgd --lr=0.1 --loss=crossent --nonlin=step11 --tp-rule=SSTE --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# 3-bit quantized ReLU (staircase3) activation with FTP-SH
python3 train.py --ds=imagenet --arch=resnet18 --batch=256 --wtdecay=1e-5 --lr-decay=0.1 --epochs 90 --lr-decay-epochs 30 60 --momentum=0.9 --opt=sgd --lr=0.1 --loss=crossent --nonlin=staircase --tp-rule=SoftHinge --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# 3-bit quantized ReLU (staircase3) activation with SSTE
python3 train.py --ds=imagenet --arch=resnet18 --batch=256 --wtdecay=1e-5 --lr-decay=0.1 --epochs 90 --lr-decay-epochs 30 60 --momentum=0.9 --opt=sgd --lr=0.1 --loss=crossent --nonlin=staircase --tp-rule=SSTE --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# ReLU activation
python3 train.py --ds=imagenet --arch=resnet18 --batch=256 --wtdecay=1e-4 --lr-decay=0.1 --epochs 90 --lr-decay-epochs 30 60 --momentum=0.9 --opt=sgd --lr=0.1 --loss=crossent --nonlin=relu --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

# Thresholded-ReLU activation
python3 train.py --ds=imagenet --arch=resnet18 --batch=256 --wtdecay=1e-4 --lr-decay=0.1 --epochs 90 --lr-decay-epochs 30 60 --momentum=0.9 --opt=sgd --lr=0.1 --loss=crossent --nonlin=threshrelu --nworkers=12 --use-bn --no-val --plot-test --data-root=<path/to/imagenet>

Acknowledgments

This repository includes code from:

About

Feasible target propagation code for the paper "Deep Learning as a Mixed Convex-Combinatorial Optimization Problem" by Friesen & Domingos (2018).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages