Skip to content

Commit

Permalink
owe
Browse files Browse the repository at this point in the history
  • Loading branch information
sfomel committed Apr 10, 2024
1 parent 856b671 commit 873f696
Show file tree
Hide file tree
Showing 3 changed files with 464 additions and 15 deletions.
27 changes: 27 additions & 0 deletions book/tccs/owe/Pylab/omig.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
#ParametricPlot3D[{0.5 + 0.5 Sin[a Pi/180],
# Sin[a Pi/180], -0.5 Cos[a Pi/180],
# {Thickness[0.01]}}, {a, -90, 90}, BoxRatios -> {1, 2, 1},
# AxesLabel -> {"x (km)", "p (s/km)", "z (km)"},
# Ticks -> {Automatic,
# Automatic, {0, {-0.2, "0.2"}, {-0.4, "0.4"}}}];

import matplotlib.pyplot as plt
import numpy as np
from math import pi

ax = plt.figure().add_subplot(projection='3d')

a = np.linspace(-90, 90, 200)
theta = a*pi/180
x = 0.5 + 0.5*np.sin(theta)
p = np.sin(theta)
z = -0.5*np.cos(theta)

ax.plot(x, p, z)
ax.set_xlabel('x (km)')
ax.set_ylabel('p (s/km)')
ax.set_zlabel('z (km)')
ax.set_zticks([0, -0.1, -0.2, -0.3, -0.4])
ax.set_zticklabels(["0", "0.1", "0.2", "0.3", "0.4"])

plt.savefig('junk_py.eps')
23 changes: 8 additions & 15 deletions book/tccs/owe/paper.tex
Original file line number Diff line number Diff line change
Expand Up @@ -277,8 +277,6 @@ \section{Traveltimes and waves in the phase space}

\section{Oriented waves in layered media}

%\inputdir{Math}

The connection between physical and oriented waves is particularly clear in
the case when the slowness function changes with only one spatial coordinate.
Let $\mathbf{x}=\{\mathbf{y},z\}$. If the slowness $n(\mathbf{x})$ is a
Expand Down Expand Up @@ -342,21 +340,15 @@ \section{Oriented waves in layered media}
additionally demonstrated in Figure~\ref{fig:ogaz} by creating a decomposition
of the impulse response by partial stacking in the phase-space domain.

\begin{figure}[htbp]
\centering
\includegraphics[width=\columnwidth]{Math/Fig/ostolt.pdf}
\caption{Stolt's frequency-wavenumber hyperbola
\inputdir{Sage}

\sideplot{ostolt}{width=\textwidth}{Stolt's frequency-wavenumber hyperbola
is the envelop of frequency-wavenumber planes from oriented plane waves.}
\label{fig:ostolt}
\end{figure}

\begin{figure}[htbp]
\centering
\includegraphics[width=0.8\columnwidth]{Math/Fig/omig.pdf}
\caption{Kinematic impulse response of the
\inputdir{Pylab}

\sideplot{omig}{width=\textwidth}{Kinematic impulse response of the
constant-velocity zero-offset phase-space migration.}
\label{fig:omig}
\end{figure}

%\sideplot{ostolt}{width=\columnwidth}{Stolt's frequency-wavenumber hyperbola
% is the envelop of frequency-wavenumber planes from oriented plane waves.}
Expand Down Expand Up @@ -429,7 +421,8 @@ \section{Discussion}
phase-space domain. The sparseness is easily understood in the case of layered
or constant-velocity media. In the general case, it should be possible to
preserve sparseness in the downward wavefield continuation by decomposing the
wavefield into spatially constrained oriented beams \cite[]{wg}. The oriented
wavefield into spatially constrained oriented beams. % \cite[]{wg}.
The oriented
wave equation allows Gaussian beams \cite[]{GEO66-04-12401250} or other sparse
phase-space data representations to be downward continued without
computationally troublesome ray tracing. Exploring this opportunity remains an
Expand Down
Loading

0 comments on commit 873f696

Please sign in to comment.