Simple neural network library for browser and Node.js. Work in Progress.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
lib
samples
test
.gitignore
.npmignore
LICENSE
README.md
package.json

README.md

SimpleNeuron

Simple neural network library for browser and Node.js. Work in Progress.

Installation

Via npm on Node:

npm install simpleneuron

Usage

Reference in your program:

var sn = require('simpleneuron');

Create a neuron

var neuron = sn.neuron();

It is a simple threshold neuron with trigger value = 1.

Connect a neuron with other neuron

var neuron = sn.neuron();
var input = sn.neuron();
neuron.input(input);

The input has weight 1

Connect a neuron with other neuron using a weight value

var neuron = sn.neuron();
var input = sn.neuron();
neuron.input(input, -0.5);

The input has weight -0.5.

Set the output value of neuron:

neuron.output(1);

Usually, this method is used to set the initial neuron layer values.

Get the output value of a neuron:

var result = neuron.output();

Create a network of neurons, with three layers, containing 4, 15, 3 neurons. The weights are random values between -1 and 1:

var network = ss.network([4, 15, 3]);

Get the number of neurons in a network:

var count = network.neurons();

In the previous created network, the count is 4+15+3 == 22.

Get the number of neurons in a layer:

var count0 = network.neurons(0); // 4
var count1 = network.neurons(1); // 15
var count2 = network.neurons(2); // 3

TBD

Development

git clone git://github.com/ajlopez/SimpleNeuron.git
cd SimpleNeuron
npm install
npm test

Samples

TBD

Versions

  • 0.0.1 Published

License

MIT

References

Books

  • Neural Networks, Simon Haykin
  • Fundamentals of Deep Learning, Nikhil Buduma (2017, O’Reilly)
  • Anthony L. Caterini, Dong Eui Chang - Deep Neural Networks in a Mathematical Framework (2018, Springer)
  • Charu C. Aggarwal - Neural Networks and Deep Learning. A Textbook (2018, Springer)
  • Ian Goodfellow, Yoshua Bengio, Aaron Courville - Deep Learning (2016, The MIT Press)

Contribution

Feel free to file issues and submit pull requests — contributions are welcome<

If you submit a pull request, please be sure to add or update corresponding test cases, and ensure that npm test continues to pass.