Skip to content

Commit

Permalink
NEON64: enc: convert full encoding loop to inline assembly
Browse files Browse the repository at this point in the history
Convert the full encoding loop to an inline assembly implementation for
systems that can use inline assembly.

The motivation for this work is that when optimization is turned off on
recent versions of clang, the encoding table would not be loaded into
sequential registers (see issue #96). This happened despite taking pains
to ensure that the compiler uses an explicit set of registers for the
load (v8..v11).

This leaves us with not much options beside rewriting the full encoding
loop in inline assembly. Only that way can we be absolutely certain that
the register usage is always correct. Thankfully, aarch64 assembly is
not very difficult to write by hand.

In making this change, we can/should add some optimizations in the loop
unrolling for rounds >= 8. The unrolled loop should optimize pipeline
efficiency by interleaving memory operations (like loads and stores)
with data operations (like table lookups). The best way to achieve this
is to blend the unrolled loops such that one loop prefetches the
registers needed in the next loop.

To make that possible without duplicating massive amounts of code, we
abstract the various assembly blocks into preprocessor macros and
instantiate them as needed. This mixing of the preprocessor with inline
assembly is perhaps a bit gnarly, but I think the usage is simple enough
that the advantages (code reuse) outweigh the disadvantages.

Code was tested on a Debian VM running under QEMU. Unfortunately this
does not let us see how the actual bare metal performance
increases/decreases.
  • Loading branch information
aklomp committed Jul 21, 2022
1 parent bf3331c commit 97d0a78
Showing 1 changed file with 154 additions and 83 deletions.
237 changes: 154 additions & 83 deletions lib/arch/neon64/enc_loop_asm.c
Original file line number Diff line number Diff line change
@@ -1,103 +1,174 @@
// Apologies in advance for combining the preprocessor with inline assembly,
// two notoriously gnarly parts of C, but it was necessary to avoid a lot of
// code repetition. The preprocessor is used to template large sections of
// inline assembly that differ only in the registers used. If the code was
// written out by hand, it would become very large and hard to audit.

// Generate a block of inline assembly that loads three user-defined registers
// V0..V2 from memory and deinterleaves them, post-incrementing the src
// pointer. The register set should be sequential.
#define LOAD(V0, V1, V2) \
"ld3 {"V0".16b, "V1".16b, "V2".16b}, [%[src]], #48 \n\t"

// Generate a block of inline assembly that takes three deinterleaved registers
// and shuffles the bytes. The output is in temporary registers t0..t3.
#define SHUF(V0, V1, V2) \
"ushr %[t0].16b, "V0".16b, #2 \n\t" \
"ushr %[t1].16b, "V1".16b, #4 \n\t" \
"ushr %[t2].16b, "V2".16b, #6 \n\t" \
"sli %[t1].16b, "V0".16b, #4 \n\t" \
"sli %[t2].16b, "V1".16b, #2 \n\t" \
"and %[t1].16b, %[t1].16b, %[n63].16b \n\t" \
"and %[t2].16b, %[t2].16b, %[n63].16b \n\t" \
"and %[t3].16b, "V2".16b, %[n63].16b \n\t"

// Generate a block of inline assembly that takes temporary registers t0..t3
// and translates them to the base64 alphabet, using a table loaded into
// v8..v11. The output is in user-defined registers V0..V3.
#define TRAN(V0, V1, V2, V3) \
"tbl "V0".16b, {v8.16b-v11.16b}, %[t0].16b \n\t" \
"tbl "V1".16b, {v8.16b-v11.16b}, %[t1].16b \n\t" \
"tbl "V2".16b, {v8.16b-v11.16b}, %[t2].16b \n\t" \
"tbl "V3".16b, {v8.16b-v11.16b}, %[t3].16b \n\t"

// Generate a block of inline assembly that interleaves four registers and
// stores them, post-incrementing the destination pointer.
#define STOR(V0, V1, V2, V3) \
"st4 {"V0".16b, "V1".16b, "V2".16b, "V3".16b}, [%[dst]], #64 \n\t"

// Generate a block of inline assembly that generates a single generic encoder
// round: fetch the data, process it, and store the result.
#define ROUND() \
LOAD("v12", "v13", "v14") \
SHUF("v12", "v13", "v14") \
TRAN("v12", "v13", "v14", "v15") \
STOR("v12", "v13", "v14", "v15")

// Generate a block of assembly that generates a type A interleaved encoder
// round: it uses registers that were fetched by the previous type B round, and
// fetches registers for the next type B round.
#define ROUND_A() \
SHUF("v2", "v3", "v4") \
LOAD("v12", "v13", "v14") \
TRAN("v2", "v3", "v4", "v5") \
STOR("v2", "v3", "v4", "v5")

// Type B interleaved encoder round. Same as type A, but registers swapped.
#define ROUND_B() \
SHUF("v12", "v13", "v14") \
LOAD("v2", "v3", "v4") \
TRAN("v12", "v13", "v14", "v15") \
STOR("v12", "v13", "v14", "v15")

// The first type A round needs to load its own registers.
#define ROUND_A_FIRST() \
LOAD("v2", "v3", "v4") \
SHUF("v2", "v3", "v4") \
LOAD("v12", "v13", "v14") \
TRAN("v2", "v3", "v4", "v5") \
STOR("v2", "v3", "v4", "v5")

// The last type B round omits the load for the next step.
#define ROUND_B_LAST() \
SHUF("v12", "v13", "v14") \
TRAN("v12", "v13", "v14", "v15") \
STOR("v12", "v13", "v14", "v15")

// Suppress clang's warning that the literal string in the asm statement is
// overlong (longer than the ISO-mandated minimum size of 4095 bytes for C99
// compilers). It may be true, but the goal here is not C99 portability.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Woverlength-strings"

static inline void
enc_loop_neon64_inner (const uint8_t **s, uint8_t **o, const uint8x16x4_t tbl_enc)
enc_loop_neon64 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
// This function duplicates the functionality of enc_loop_neon64_inner,
// but entirely with inline assembly. This gives a significant speedup
// over using NEON intrinsics, which do not always generate very good
// code. The logic of the assembly is directly lifted from the
// intrinsics version, so it can be used as a guide to this code.
size_t rounds = *slen / 48;

if (rounds == 0) {
return;
}

*slen -= rounds * 48; // 48 bytes consumed per round.
*olen += rounds * 64; // 64 bytes produced per round.

// Number of times to go through the 8x loop.
size_t loop = rounds / 8;

// Number of rounds remaining after the 8x loop.
rounds %= 8;

// Temporary registers, used as scratch space.
uint8x16_t tmp0, tmp1, tmp2, tmp3;

// Numeric constant.
const uint8x16_t n63 = vdupq_n_u8(63);
__asm__ volatile (

// Load the encoding table into v8..v11.
" ld1 {v8.16b-v11.16b}, [%[tbl]] \n\t"

// If there are eight rounds or more, enter an 8x unrolled loop
// of interleaved encoding rounds. The rounds interleave memory
// operations (load/store) with data operations (table lookups,
// etc) to maximize pipeline throughput.
" cbz %[loop], 99f \n\t"
"8: \n\t"

ROUND_A_FIRST() // Round 1.
ROUND_B() // Round 2.
ROUND_A() // Round 3.
ROUND_B() // Round 4.
ROUND_A() // Round 5.
ROUND_B() // Round 6.
ROUND_A() // Round 7.
ROUND_B_LAST() // Round 8.

// Decrement the loop counter until it reaches zero.
" subs %[loop], %[loop], #1 \n\t"
" b.ne 8b \n\t"

__asm__ (
// Enter a 4x unrolled loop for rounds of 4 or more.
"99: cmp %[rounds], #4 \n\t"
" b.lt 98f \n\t"

// Load 48 bytes and deinterleave. The bytes are loaded to
// hard-coded registers v12, v13 and v14, to ensure that they
// are contiguous. Increment the source pointer.
"ld3 {v12.16b, v13.16b, v14.16b}, [%[src]], #48 \n\t"
ROUND_A_FIRST() // Round 1.
ROUND_B() // Round 2.
ROUND_A() // Round 3.
ROUND_B_LAST() // Round 4.

// Reshuffle the bytes using temporaries.
"ushr %[t0].16b, v12.16b, #2 \n\t"
"ushr %[t1].16b, v13.16b, #4 \n\t"
"ushr %[t2].16b, v14.16b, #6 \n\t"
"sli %[t1].16b, v12.16b, #4 \n\t"
"sli %[t2].16b, v13.16b, #2 \n\t"
"and %[t1].16b, %[t1].16b, %[n63].16b \n\t"
"and %[t2].16b, %[t2].16b, %[n63].16b \n\t"
"and %[t3].16b, v14.16b, %[n63].16b \n\t"
" sub %[rounds], %[rounds], #4 \n\t"

// Translate the values to the Base64 alphabet.
"tbl v12.16b, {%[l0].16b, %[l1].16b, %[l2].16b, %[l3].16b}, %[t0].16b \n\t"
"tbl v13.16b, {%[l0].16b, %[l1].16b, %[l2].16b, %[l3].16b}, %[t1].16b \n\t"
"tbl v14.16b, {%[l0].16b, %[l1].16b, %[l2].16b, %[l3].16b}, %[t2].16b \n\t"
"tbl v15.16b, {%[l0].16b, %[l1].16b, %[l2].16b, %[l3].16b}, %[t3].16b \n\t"
// Dispatch the remaining rounds 0..3.
"98: cbz %[rounds], 0f \n\t"
" cmp %[rounds], #2 \n\t"
" b.eq 2f \n\t"
" b.lt 1f \n\t"

// Store 64 bytes and interleave. Increment the dest pointer.
"st4 {v12.16b, v13.16b, v14.16b, v15.16b}, [%[dst]], #64 \n\t"
// Block of non-interlaced encoding rounds, which can each
// individually be jumped to. Rounds fall through to the next.
"3: " ROUND()
"2: " ROUND()
"1: " ROUND()
"0: \n\t"

// Outputs (modified).
: [src] "+r" (*s),
[dst] "+r" (*o),
[t0] "=&w" (tmp0),
[t1] "=&w" (tmp1),
[t2] "=&w" (tmp2),
[t3] "=&w" (tmp3)
: [loop] "+r" (loop),
[src] "+r" (*s),
[dst] "+r" (*o),
[t0] "=&w" (tmp0),
[t1] "=&w" (tmp1),
[t2] "=&w" (tmp2),
[t3] "=&w" (tmp3)

// Inputs (not modified).
: [n63] "w" (n63),
[l0] "w" (tbl_enc.val[0]),
[l1] "w" (tbl_enc.val[1]),
[l2] "w" (tbl_enc.val[2]),
[l3] "w" (tbl_enc.val[3])
: [rounds] "r" (rounds),
[tbl] "r" (base64_table_enc_6bit),
[n63] "w" (vdupq_n_u8(63))

// Clobbers.
: "v12", "v13", "v14", "v15"
: "v2", "v3", "v4", "v5",
"v8", "v9", "v10", "v11",
"v12", "v13", "v14", "v15"
);
}

static inline void
enc_loop_neon64 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
size_t rounds = *slen / 48;

*slen -= rounds * 48; // 48 bytes consumed per round
*olen += rounds * 64; // 64 bytes produced per round

// Load the encoding table:
const uint8x16x4_t tbl_enc = load_64byte_table(base64_table_enc_6bit);

while (rounds > 0) {
if (rounds >= 8) {
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
rounds -= 8;
continue;
}
if (rounds >= 4) {
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
rounds -= 4;
continue;
}
if (rounds >= 2) {
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
rounds -= 2;
continue;
}
enc_loop_neon64_inner(s, o, tbl_enc);
break;
}
}
#pragma GCC diagnostic pop

0 comments on commit 97d0a78

Please sign in to comment.