Skip to content

Runtime library to validate data against TypeScript interfaces.

License

Notifications You must be signed in to change notification settings

alexmojaki/ts-interface-checker

 
 

Repository files navigation

ts-interface-checker

Build Status npm version

Runtime library to validate data against TypeScript interfaces.

This package is the runtime support for validators created by ts-interface-builder. It allows validating data, such as parsed JSON objects received over the network, or parsed JSON or YAML files, to check if they satisfy a TypeScript interface, and to produce informative error messages if they do not.

Installation

npm install --save-dev ts-interface-builder
npm install --save ts-interface-checker

Usage

Suppose you have a TypeScript file defining an interface:

// foo.ts
interface Square {
  size: number;
  color?: string;
}

The first step is to generate some code for runtime checks:

`npm bin`/ts-interface-builder foo.ts

It produces a file like this:

// foo-ti.js
import * as t from "ts-interface-checker";

export const Square = t.iface([], {
  "size": "number",
  "color": t.opt("string"),
});
...

Now at runtime, to check if a value satisfies the Square interface:

import fooTI from "./foo-ti";
import {createCheckers} from "ts-interface-checker";

const {Square} = createCheckers(fooTI);

Square.check({size: 1});                  // OK
Square.check({size: 1, color: "green"});  // OK
Square.check({color: "green"});           // Fails with "value.size is missing"
Square.check({size: 4, color: 5});        // Fails with "value.color is not a string"

Note that ts-interface-builder is only needed for the build-time step, and ts-interface-checker is needed at runtime. That's why the recommendation is to npm-install the former using --save-dev flag and the latter using --save.

Checking method calls

If you have an interface with methods, you can validate method call arguments and return values:

// greet.ts
interface Greeter {
  greet(name: string): string;
}

After generating the runtime code, you can now check calls like:

import greetTI from "./greet-ti";
import {createCheckers} from "ts-interface-checker";

const {Greeter} = createCheckers(greetTI);

Greeter.methodArgs("greet").check(["Bob"]);     // OK
Greeter.methodArgs("greet").check([17]);        // Fails with "value.name is not a string"
Greeter.methodArgs("greet").check([]);          // Fails with "value.name is missing"

Greeter.methodResult("greet").check("hello");   // OK
Greeter.methodResult("greet").check(null);      // Fails with "value is not a string"

Type suites

If one type refers to a type defined in another file, you need to tell the interface checker about all type names when you call createCheckers(). E.g. given

// color.ts
export type Color = RGB | string;
export type RGB = [number, number, number];
// shape.ts
import {Color} from "./color";
export interface Square {
  size: number;
  color?: Color;
}

the produced files color-ti.ts and shape-ti.ts do not automatically refer to each other, but expect you to relate them in createCheckers() call:

import color from "./color-ti";
import shape from "./shape-ti";
import {createCheckers} from "ts-interface-checker";

const {Square} = createCheckers(shape, color);    // Pass in all required type suites.

Square.check({size: 1, color: [255,255,255]});

Strict checking

You may check that data contains no extra properties. Note that it is not generally recommended as it this prevents backward compatibility: if you add new properties to an interface, then older code with strict checks will not accept them.

Following on the example above:

Square.strictCheck({size: 1, color: [255,255,255], bg: "blue"});    // Fails with value.bg is extraneous
Square.strictCheck({size: 1, color: [255,255,255,0.5]});            // Fails with ...value.color[3] is extraneous

Type guards

Standard Checker objects do the type checking logic, but are unable to make the TypeScript compiler aware that an object of unknown type implements a certain interface.

Basic code:

const unk: unknown = {size: 1, color: "green"};
// Type is unknown, so TypeScript will not let you access the members.
console.log(unk.size); // Error: "Object is of type 'unknown'"

With a Checker available:

import fooTI from "./foo-ti";
import {createCheckers} from "ts-interface-checker";

const {Square} = createCheckers(fooTI);

const unk: unknown = {size: 1, color: "green"};

if (Square.test(unk)) {
  // unk does implement Square, but TypeScript is not aware of it.
  console.log(unk.size); // Error: "Object is of type 'unknown'"
}

To enable type guard functionality on the existing test, and strictTest functions, Checker objects should be cast to CheckerT<> using the appropriate type.

Using CheckerT<>:

import {Square} from "./foo";
import fooTI from "./foo-ti";
import {createCheckers, CheckerT} from "ts-interface-checker";

const {Square} = createCheckers(fooTI) as {Square: CheckerT<Square>};

const unk: unknown = {size: 1, color: "green"};

if (Square.test(unk)) {
  // TypeScript is now aware that unk implements Square, and allows member access.
  console.log(unk.size);
}

Type assertions

CheckerT<> will eventually support type assertions using the check and strictCheck functions, however, this feature is not yet fully working in TypeScript.

About

Runtime library to validate data against TypeScript interfaces.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • TypeScript 55.5%
  • JavaScript 44.5%