Skip to content

ammar257ammar/Nanosafety-data-reusability-34-datasets

Repository files navigation

Data completeness and reusability assessment for 34 nanosafety datasets

GitHub release (latest SemVer) GitHub top language GitHub DOI

This work is part of the study titled: A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory Quantitative Structure Activity Relationships (QSAR) modeling targeting cellular viability. The other part is available here.

Based on previous work of Irini Furxhi https://doi.org/10.1016/j.impact.2021.100378, a FAIR-based analysis for reusability has been conducted on 34 datasets from the nanosafety domain.

First, each dataset was described with an HTML page showing the main metadata about the original publication and a glimpse of the related datasets content. In parallel, each dataset overview page was annotated with nanosafety-community FAIR maturity indicators for reusability using the NSDRA framewrok JSON-LD metadata generator http://w3id.org/nsdra/metadata-generator. Next, the JSON-LD was extracted and analyzed to get insight about the varaibles measured/reported in each dataset and the suitable applications for reusability.

The construction of the dataset description, overview pages and the analysis has been performed using Python and Jupyter notebook. Link to the analysis notebook: Analysis Jupyter Notebook

Below is the general description of the 34 publications. Each row is linked to the detailed overview of the related dataset.

Dataset publications description

Details group_key DOI hash title journal dateOfPublish-year dateOfPublish-month dateOfPublish-day authors link license subject type
details Toxicological Datasets 10.1073/pnas.1919755117 9e1d426c9015fc15d718b0fbd3f41152 Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles Proceedings of the National Academy of Sciences 2020 4 24 Zhan Ban, Peng Yuan, Fubo Yu, Ting Peng, Qixing Zhou, Xiangang Hu https://creativecommons.org/licenses/by-nc-nd/4.0/ Multidisciplinary journal-article
details Toxicological Datasets 10.1289/ehp6508 9a9ad3fe96432ca53a6ad331a5283ea6 Quantitative Structure–Activity Relationship Models for Predicting Inflammatory Potential of Metal Oxide Nanoparticles Environmental Health Perspectives 2020 6 Yang Huang, Xuehua Li, Shujuan Xu, Huizhen Zheng, Lili Zhang, Jingwen Chen, Huixiao Hong, Rebecca Kusko, Ruibin Li https://ehp.niehs.nih.gov/about-ehp/license Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health journal-article
details Toxicological Datasets 10.1038/s41598-018-24483-z 16876494884cd452d29ad6455ab7e4dc Towards a generalized toxicity prediction model for oxide nanomaterials using integrated data from different sources Scientific Reports 2018 4 17 Jang-Sik Choi, My Kieu Ha, Tung Xuan Trinh, Tae Hyun Yoon, Hyung-Gi Byun http://www.nature.com/articles/s41598-018-24483-z.pdf https://creativecommons.org/licenses/by/4.0 Multidisciplinary journal-article
details Toxicological Datasets 10.3390/nano10102017 5d2e680699dcb1d8ec6ee07941653774 Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform Nanomaterials 2020 10 13 Anastasios G. Papadiamantis, Jaak Jänes, Evangelos Voyiatzis, Lauri Sikk, Jaanus Burk, Peeter Burk, Andreas Tsoumanis, My Kieu Ha, Tae Hyun Yoon, Eugenia Valsami-Jones, Iseult Lynch, Georgia Melagraki, Kaido Tämm, Antreas Afantitis https://creativecommons.org/licenses/by/4.0/ General Materials Science,General Chemical Engineering journal-article
details Toxicological Datasets 10.1002/smll.201900510 0a77bd4afd69252e1fa0b8f3e52c1100 Bayesian Network Resource for Meta‐Analysis: Cellular Toxicity of Quantum Dots Small 2019 6 17 Muhammad Bilal, Eunkeu Oh, Rong Liu, Joyce C. Breger, Igor L. Medintz, Yoram Cohen https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fsmll.201900510 http://onlinelibrary.wiley.com/termsAndConditions#am Biomaterials,Biotechnology,General Materials Science,General Chemistry journal-article
details Toxicological Datasets 10.1021/acs.est.8b02757 51cbf2d4aebab163496fe926091be171 Screening Priority Factors Determining and Predicting the Reproductive Toxicity of Various Nanoparticles Environmental Science & Technology 2018 7 30 Zhan Ban, Qixing Zhou, Anqi Sun, Li Mu, Xiangang Hu https://creativecommons.org/licenses/by-nc/4.0/ Environmental Chemistry,General Chemistry journal-article
details Toxicological Datasets 10.1080/17435390.2019.1595206 4f4d02f185841bd3bf33503d672fd16c Application of Bayesian networks in determining nanoparticle-induced cellular outcomes using transcriptomics Nanotoxicology 2019 5 29 Irini Furxhi, Finbarr Murphy, Craig A. Poland, Barry Sheehan, Martin Mullins, Paride Mantecca https://tandfonline.com/doi/pdf/10.1080/17435390.2019.1595206 http://creativecommons.org/licenses/by-nc-nd/4.0/ Toxicology,Biomedical Engineering journal-article
details Toxicological Datasets 10.1016/j.chemosphere.2018.11.014 0e3c23628a103c9cf92cc651a30ccc4a Quasi-QSAR for predicting the cell viability of human lung and skin cells exposed to different metal oxide nanomaterials Chemosphere 2019 2 Jang-Sik Choi, Tung X. Trinh, Tae-Hyun Yoon, Jongwoon Kim, Hyung-Gi Byun https://www.elsevier.com/tdm/userlicense/1.0/ General Medicine,General Chemistry,Environmental Chemistry,Environmental Engineering,Pollution,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health journal-article
details Toxicological Datasets 10.1038/s41467-020-16413-3 ff9cfd6e9e9373c0f4196ff2b093d57c Construction of a web-based nanomaterial database by big data curation and modeling friendly nanostructure annotations Nature Communications 2020 5 20 Xiliang Yan, Alexander Sedykh, Wenyi Wang, Bing Yan, Hao Zhu http://www.nature.com/articles/s41467-020-16413-3.pdf https://creativecommons.org/licenses/by/4.0 General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry journal-article
details Toxicological Datasets 10.4018/ijqspr.20201001.oa2 30f8d0f7550dd28cfe6e145aa29da619 Development of Generalized QSAR Models for Predicting Cytotoxicity and Genotoxicity of Metal Oxides Nanoparticles International Journal of Quantitative Structure-Property Relationships 2020 10 1 Pravin Ambure, Arantxa Ballesteros, Francisco Huertas, Pau Camilleri, Stephen J. Barigye, Rafael Gozalbes http://creativecommons.org/licenses/by/3.0/deed.en_US Geriatrics and Gerontology journal-article
details Toxicological Datasets 10.3390/ijms21155280 dd7e97719a7a4d561f8dbefc27b73390 Predicting In Vitro Neurotoxicity Induced by Nanoparticles Using Machine Learning International Journal of Molecular Sciences 2020 7 25 Irini Furxhi, Finbarr Murphy https://creativecommons.org/licenses/by/4.0/ Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis journal-article
details Toxicological Datasets 10.1007/s11224-021-01869-w 40a0d72701e9766b96b10a4c30fec4cd Using the Isalos platform to develop a (Q)SAR model that predicts metal oxide toxicity utilizing facet-based electronic, image analysis-based, and periodic table derived properties as descriptors Structural Chemistry 2021 12 23 M. M. Thwala, A. Afantitis, A. G. Papadiamantis, A. Tsoumanis, G. Melagraki, L. N. Dlamini, C. N. M. Ouma, P. Ramasami, R. Harris, T. Puzyn, N. Sanabria, I. Lynch, M. Gulumian https://link.springer.com/content/pdf/10.1007/s11224-021-01869-w.pdf https://creativecommons.org/licenses/by/4.0 Physical and Theoretical Chemistry,Condensed Matter Physics journal-article
details Toxicological Datasets 10.1039/d0en01240h 2210ee6fb32877791d97ba4adb4faed3 Cytotoxicity analysis of nanoparticles by association rule mining Environmental Science: Nano 2021 Gulsah Gul, Ramazan Yildirim, Nazar Ileri-Ercan http://rsc.li/journals-terms-of-use General Environmental Science,Materials Science (miscellaneous) journal-article
details Toxicological Datasets 10.1021/acs.chemrestox.7b00303 852ace6f6288f335dbbdfc0f149d679e Quasi-SMILES-Based Nano-Quantitative Structure–Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells Chemical Research in Toxicology 2018 2 14 Tung Xuan Trinh, Jang-Sik Choi, Hyunpyo Jeon, Hyung-Gi Byun, Tae-Hyun Yoon, Jongwoon Kim https://creativecommons.org/licenses/by-nc/4.0/ Toxicology,General Medicine journal-article
details Toxicological Datasets 10.1080/17435390.2016.1278481 364572eee5b81bf59ff7ae8fc095ccfb Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment Nanotoxicology 2017 1 2 Hans J. P. Marvin, Yamine Bouzembrak, Esmée M. Janssen, Meike van der Zande, Finbarr Murphy, Barry Sheehan, Martin Mullins, Hans Bouwmeester https://www.tandfonline.com/doi/pdf/10.1080/17435390.2016.1278481 http://creativecommons.org/licenses/by-nc-nd/4.0/ Toxicology,Biomedical Engineering journal-article
details Toxicological Datasets 10.3762/bjnano.6.192 0904205a9a7d59d1274b61d2c83f97c4 Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors Beilstein Journal of Nanotechnology 2015 9 11 David E Jones, Hamidreza Ghandehari, Julio C Facelli http://creativecommons.org/licenses/by/2.0 Electrical and Electronic Engineering,General Physics and Astronomy,General Materials Science journal-article
details Toxicological Datasets 10.1016/j.impact.2021.100298 a1cc8d01610f24dc3ca54c053134d707 Use of size-dependent electron configuration fingerprint to develop general prediction models for nanomaterials NanoImpact 2021 1 Hyun Kil Shin, Soojin Kim, Seokjoo Yoon https://www.elsevier.com/tdm/userlicense/1.0/ Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality,Materials Science (miscellaneous) journal-article
details Toxicological Datasets 10.1111/risa.12109 1e7da9d774c38851a23f5b0ec66b5aff A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies-How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes Risk Analysis 2013 9 11 Jeremy M. Gernand, Elizabeth A. Casman http://doi.wiley.com/10.1002/tdm_license_1.1 Physiology (medical),Safety, Risk, Reliability and Quality journal-article
details Toxicological Datasets 10.1021/nn406018q 4ab8fc4886992f27977aa1161de85c00 Protein Corona Fingerprinting Predicts the Cellular Interaction of Gold and Silver Nanoparticles ACS Nano 2014 2 25 Carl D. Walkey, Jonathan B. Olsen, Fayi Song, Rong Liu, Hongbo Guo, D. Wesley H. Olsen, Yoram Cohen, Andrew Emili, Warren C. W. Chan https://creativecommons.org/licenses/by-nc/4.0/ General Physics and Astronomy,General Engineering,General Materials Science journal-article
details Toxicological Datasets 10.1021/acsnano.8b07562 409b3f244f83b2bfe21a1bccd586a221 Meta-Analysis of Nanoparticle Cytotoxicity via Data-Mining the Literature ACS Nano 2019 1 31 Hagar I. Labouta, Nasimeh Asgarian, Kristina Rinker, David T. Cramb https://doi.org/10.15223/policy-029 General Physics and Astronomy,General Engineering,General Materials Science journal-article
details Perturbation Datasets 10.1016/j.chemosphere.2019.125489 0dbe3fd7cd021f444d98c55132f48473 A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles Chemosphere 2020 4 Amit Kumar Halder, André Melo, M. Natália D.S. Cordeiro https://www.elsevier.com/tdm/userlicense/1.0/ General Medicine,General Chemistry,Environmental Chemistry,Environmental Engineering,Pollution,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health journal-article
details Perturbation Datasets 10.1016/j.envint.2014.08.009 d97c408142f8a2badc39d857367e65a8 Computational ecotoxicology: Simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions Environment International 2014 12 Valeria V. Kleandrova, Feng Luan, Humberto González-Díaz, Juan M. Ruso, André Melo, Alejandro Speck-Planche, M. Natália D.S. Cordeiro https://www.elsevier.com/tdm/userlicense/1.0/ General Environmental Science journal-article
details Perturbation Datasets 10.1080/17435390.2017.1379567 d220a31dfbd928c6818d49a713ca2fff Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory Nanotoxicology 2017 8 9 Riccardo Concu, Valeria V. Kleandrova, Alejandro Speck-Planche, M. Natália D. S. Cordeiro https://creativecommons.org/licenses/by-nc/4.0/ Toxicology,Biomedical Engineering journal-article
details Perturbation Datasets 10.1039/c4nr01285b 526962eb58312803b6868a4fa5e96c22 Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach Nanoscale 2014 6 25 Feng Luan, Valeria V. Kleandrova, Humberto González-Díaz, Juan M. Ruso, André Melo, Alejandro Speck-Planche, M. Natália D. S. Cordeiro https://www.rsc.org/journals-books-databases/author-and-reviewer-hub/authors-information/licences-copyright-permissions General Materials Science journal-article
details Perturbation Datasets 10.1021/es503861x ef846b8f8be6523ae1f4fdf8e440cd11 Computational Tool for Risk Assessment of Nanomaterials: Novel QSTR-Perturbation Model for Simultaneous Prediction of Ecotoxicity and Cytotoxicity of Uncoated and Coated Nanoparticles under Multiple Experimental Conditions Environmental Science & Technology 2014 11 21 Valeria V. Kleandrova, Feng Luan, Humberto González-Díaz, Juan M. Ruso, Alejandro Speck-Planche, M. Natália D. S. Cordeiro https://creativecommons.org/licenses/by-nc/4.0/ Environmental Chemistry,General Chemistry journal-article
details PhysChem & Functionality Datasets 10.1080/15363830701779315 84a9f57ee628617787b9ebab1aa5d2f7 A Molecular-Based Model for Prediction of Solubility of C60 Fullerene in Various Solvents Fullerenes, Nanotubes and Carbon Nanostructures 2008 1 Farhad Gharagheizi, Reza Fareghi Alamdari https://creativecommons.org/licenses/by/4.0/ Organic Chemistry,Physical and Theoretical Chemistry,General Materials Science,Atomic and Molecular Physics, and Optics journal-article
details PhysChem & Functionality Datasets 10.1016/j.impact.2021.100308 909758f06b965ff79e92f1c45e0c4e1a Computational enrichment of physicochemical data for the development of a zeta-potential read-across predictive model with Isalos Analytics Platform NanoImpact 2021 4 Anastasios G. Papadiamantis, Antreas Afantitis, Andreas Tsoumanis, Eugenia Valsami-Jones, Iseult Lynch, Georgia Melagraki https://www.elsevier.com/tdm/userlicense/1.0/ Public Health, Environmental and Occupational Health,Safety Research,Safety, Risk, Reliability and Quality,Materials Science (miscellaneous) journal-article
details PhysChem & Functionality Datasets 10.1021/acs.jpcc.0c01195 47c4342ba770cd843133bd8f5b236422 Learning from the Machine: Uncovering Sustainable Nanoparticle Design Rules The Journal of Physical Chemistry C 2020 5 20 Clyde A. Daly, Rigoberto Hernandez https://doi.org/10.15223/policy-029 Surfaces, Coatings and Films,Physical and Theoretical Chemistry,General Energy,Electronic, Optical and Magnetic Materials journal-article
details PhysChem & Functionality Datasets 10.3390/nano11071774 bd8560592e2d3ad3cedae66da2154610 A Machine Learning Tool to Predict the Antibacterial Capacity of Nanoparticles Nanomaterials 2021 7 7 Mahsa Mirzaei, Irini Furxhi, Finbarr Murphy, Martin Mullins https://creativecommons.org/licenses/by/4.0/ General Materials Science,General Chemical Engineering journal-article
details PhysChem & Functionality Datasets 10.1039/c9nh00060g e1019020544fafb6a1ad3f721dca49f0 Classifying and predicting the electron affinity of diamond nanoparticles using machine learning Nanoscale Horizons 2019 C. A. Feigl, B. Motevalli, A. J. Parker, B. Sun, A. S. Barnard http://rsc.li/journals-terms-of-use General Materials Science journal-article
details Environmetal Datasets 10.1080/17435390.2021.1872113 d41d8cd98f00b204e9800998ecf8427e Machine learning predictions of concentration-specific aggregate hazard scores of inorganic nanomaterials in embryonic zebrafish Nanotoxicology 2021 2 15 C. Gousiadou and R. L. Marchese Robinson and M. Kotzabasaki and P. Doganis and T. A. Wilkins and X. Jia and H. Sarimveis and S. L. Harper https://www.tandfonline.com/doi/abs/10.1080/17435390.2021.1872113 https://creativecommons.org/licenses/by/4.0/ Multidisciplinary journal-article
details Environmetal Datasets 10.1016/j.chemosphere.2021.131452 974d6633c1c8fd486deb996112268062 Ecotoxicological read-across models for predicting acute toxicity of freshly dispersed versus medium-aged NMs to Daphnia magna Chemosphere 2021 12 Dimitra-Danai Varsou, Laura-Jayne A. Ellis, Antreas Afantitis, Georgia Melagraki, Iseult Lynch https://www.elsevier.com/tdm/userlicense/1.0/ General Medicine,General Chemistry,Environmental Chemistry,Environmental Engineering,Pollution,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health journal-article
details Environmetal Datasets 10.1021/acs.est.1c01603 613619914ccd8fdac9661f4deb2c7c07 Prediction of Plant Uptake and Translocation of Engineered Metallic Nanoparticles by Machine Learning Environmental Science & Technology 2021 5 17 Xiaoxuan Wang, Liwei Liu, Weilan Zhang, Xingmao Ma https://doi.org/10.15223/policy-029 Environmental Chemistry,General Chemistry journal-article
details Environmetal Datasets 10.1016/j.fct.2017.08.008 d9f81da33e189d3a3ac14c426f2028de Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform Food and Chemical Toxicology 2018 2 Vasyl Kovalishyn, Natalia Abramenko, Iryna Kopernyk, Larysa Charochkina, Larysa Metelytsia, Igor V. Tetko, Willie Peijnenburg, Leonid Kustov https://www.elsevier.com/tdm/userlicense/1.0/ Toxicology,General Medicine,Food Science journal-article

Assessment of the datasets using the NSDRA generic maturity indicators

hash chemical composition surface chemistry/coating/functionalization purity nanomaterial labeling/identity nanomaterial source size shape surface area surface charge zeta potential crystallinity solubility stability dispersibility density agglomeration state dose/concentration exposure time/duration number of controls number of replicates data analysis methods organism/species method/route of administration in vivo - number of test subjects in vivo - subject weight in vivo - subject age in vivo - subject sex in vivo - subject strain in vitro - passage number in vitro - cell mycoplasma testing
9e1d426c9015fc15d718b0fbd3f41152 Y Y Y Y Y
9a9ad3fe96432ca53a6ad331a5283ea6 Y Y Y Y Y
16876494884cd452d29ad6455ab7e4dc Y Y Y Y Y Y Y
5d2e680699dcb1d8ec6ee07941653774 Y Y Y Y Y Y Y
0a77bd4afd69252e1fa0b8f3e52c1100 Y Y Y Y Y Y Y
51cbf2d4aebab163496fe926091be171 Y Y Y Y Y Y Y Y Y Y Y Y
4f4d02f185841bd3bf33503d672fd16c Y Y Y Y Y Y Y Y
0e3c23628a103c9cf92cc651a30ccc4a Y Y Y Y
ff9cfd6e9e9373c0f4196ff2b093d57c Y Y Y Y
30f8d0f7550dd28cfe6e145aa29da619 Y Y Y Y
dd7e97719a7a4d561f8dbefc27b73390 Y Y Y Y Y Y Y Y
40a0d72701e9766b96b10a4c30fec4cd Y Y Y Y
2210ee6fb32877791d97ba4adb4faed3 Y Y Y Y Y Y Y Y
852ace6f6288f335dbbdfc0f149d679e Y Y Y Y Y
364572eee5b81bf59ff7ae8fc095ccfb Y Y Y Y Y Y Y Y
0904205a9a7d59d1274b61d2c83f97c4
a1cc8d01610f24dc3ca54c053134d707 Y Y Y
1e7da9d774c38851a23f5b0ec66b5aff Y Y Y Y Y Y Y Y
4ab8fc4886992f27977aa1161de85c00 Y Y Y Y Y Y
409b3f244f83b2bfe21a1bccd586a221 Y Y Y Y Y Y Y
0dbe3fd7cd021f444d98c55132f48473 Y Y
d97c408142f8a2badc39d857367e65a8 Y Y Y Y Y
d220a31dfbd928c6818d49a713ca2fff Y Y Y Y
526962eb58312803b6868a4fa5e96c22 Y Y Y Y
ef846b8f8be6523ae1f4fdf8e440cd11 Y Y Y Y Y
84a9f57ee628617787b9ebab1aa5d2f7
909758f06b965ff79e92f1c45e0c4e1a Y Y Y Y Y Y
47c4342ba770cd843133bd8f5b236422 Y Y Y Y Y Y
bd8560592e2d3ad3cedae66da2154610 Y Y Y Y Y Y
e1019020544fafb6a1ad3f721dca49f0 Y Y Y
d41d8cd98f00b204e9800998ecf8427e Y Y Y Y Y Y Y Y
974d6633c1c8fd486deb996112268062 Y Y Y Y Y Y
613619914ccd8fdac9661f4deb2c7c07 Y Y Y Y
d9f81da33e189d3a3ac14c426f2028de Y Y Y Y Y Y Y Y Y Y

Analysis & visualization of maturity indicators assessment results

viz