Skip to content

analytics-zoo/BigDL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


Fast, Distributed, Secure AI for Big Data


BigDL seamlessly scales your data analytics & AI applications from laptop to cloud, with the following libraries:

  • Orca: Distributed Big Data & AI (TF & PyTorch) Pipeline on Spark and Ray

  • Nano: Transparent Acceleration of Tensorflow & PyTorch Programs

  • DLlib: “Equivalent of Spark MLlib” for Deep Learning

  • Chronos: Scalable Time Series Analysis using AutoML

  • Friesian: End-to-End Recommendation Systems

  • PPML (experimental): Secure Big Data and AI (with SGX Hardware Security)

For more information, you may read the docs.


Choosing the right BigDL library

flowchart TD;
    Feature1{{HW Secured Big Data & AI?}};
    Feature1-- No -->Feature2{{Python vs. Scala/Java?}};
    Feature1-- "Yes"  -->ReferPPML([<em><strong>PPML</strong></em>]);
    Feature2-- Python -->Feature3{{What type of application?}};
    Feature2-- Scala/Java -->ReferDLlib([<em><strong>DLlib</strong></em>]);
    Feature3-- "Distributed Big Data + AI (TF/PyTorch)" -->ReferOrca([<em><strong>Orca</strong></em>]);
    Feature3-- Accelerating TensorFlow / PyTorch -->ReferNano([<em><strong>Nano</strong></em>]);
    Feature3-- DL for Spark MLlib -->ReferDLlib2([<em><strong>DLlib</strong></em>]);
    Feature3-- High Level App Framework -->Feature4{{Domain?}};
    Feature4-- Time Series -->ReferChronos([<em><strong>Chronos</strong></em>]);
    Feature4-- Recommendation System -->ReferFriesian([<em><strong>Friesian</strong></em>]);
    
    click ReferNano "https://github.com/intel-analytics/bigdl#nano"
    click ReferOrca "https://github.com/intel-analytics/bigdl#orca"
    click ReferDLlib "https://github.com/intel-analytics/bigdl#dllib"
    click ReferDLlib2 "https://github.com/intel-analytics/bigdl#dllib"
    click ReferChronos "https://github.com/intel-analytics/bigdl#chronos"
    click ReferFriesian "https://github.com/intel-analytics/bigdl#friesian"
    click ReferPPML "https://github.com/intel-analytics/bigdl#ppml"
    
    classDef ReferStyle1 fill:#5099ce,stroke:#5099ce;
    classDef Feature fill:#FFF,stroke:#08409c,stroke-width:1px;
    class ReferNano,ReferOrca,ReferDLlib,ReferDLlib2,ReferChronos,ReferFriesian,ReferPPML ReferStyle1;
    class Feature1,Feature2,Feature3,Feature4,Feature5,Feature6,Feature7 Feature;
    
Loading

Installing

  • To install BigDL, we recommend using conda environment:

    conda create -n my_env 
    conda activate my_env
    pip install bigdl

    To install latest nightly build, use pip install --pre --upgrade bigdl; see Python and Scala user guide for more details.

  • To install each individual library, such as Chronos, use pip install bigdl-chronos; see the document website for more details.


Getting Started

Orca

  • The Orca library seamlessly scales out your single node TensorFlow, PyTorch or OpenVINO programs across large clusters (so as to process distributed Big Data).

    Show Orca example

    You can build end-to-end, distributed data processing & AI programs using Orca in 4 simple steps:

    # 1. Initilize Orca Context (to run your program on K8s, YARN or local laptop)
    from bigdl.orca import init_orca_context, OrcaContext
    sc = init_orca_context(cluster_mode="k8s", cores=4, memory="10g", num_nodes=2) 
    
    # 2. Perform distribtued data processing (supporting Spark DataFrames,
    # TensorFlow Dataset, PyTorch DataLoader, Ray Dataset, Pandas, Pillow, etc.)
    spark = OrcaContext.get_spark_session()
    df = spark.read.parquet(file_path)
    df = df.withColumn('label', df.label-1)
    ...
    
    # 3. Build deep learning models using standard framework APIs
    # (supporting TensorFlow, PyTorch, Keras, OpenVino, etc.)
    from tensorflow import keras
    ...
    model = keras.models.Model(inputs=[user, item], outputs=predictions)  
    model.compile(...)
    
    # 4. Use Orca Estimator for distributed training/inference
    from bigdl.orca.learn.tf.estimator import Estimator
    est = Estimator.from_keras(keras_model=model)  
    est.fit(data=df,
            feature_cols=['user', 'item'],
            label_cols=['label'],
            ...)

    See Orca user guide, as well as TensorFlow and PyTorch quickstart, for more details.

  • In addition, you can also run standard Ray programs on Spark cluster using RayOnSpark in Orca.

    Show RayOnSpark example

    You can not only run Ray program on Spark cluster, but also write Ray code inline with Spark code (so as to process the in-memory Spark RDDs or DataFrames) using RayOnSpark in Orca.

    # 1. Initilize Orca Context (to run your program on K8s, YARN or local laptop)
    from bigdl.orca import init_orca_context, OrcaContext
    sc = init_orca_context(cluster_mode="yarn", cores=4, memory="10g", num_nodes=2, init_ray_on_spark=True) 
    
    # 2. Distribtued data processing using Spark
    spark = OrcaContext.get_spark_session()
    df = spark.read.parquet(file_path).withColumn(...)
    
    # 3. Convert Spark DataFrame to Ray Dataset
    from bigdl.orca.data import spark_df_to_ray_dataset
    dataset = spark_df_to_ray_dataset(df)
    
    # 4. Use Ray to operate on Ray Datasets
    import ray
    
    @ray.remote
    def consume(data) -> int:
       num_batches = 0
       for batch in data.iter_batches(batch_size=10):
           num_batches += 1
       return num_batches
    
    print(ray.get(consume.remote(dataset)))

    See RayOnSpark user guide and quickstart for more details.

Nano

You can transparently accelerate your TensorFlow or PyTorch programs on your laptop or server using Nano. With minimum code changes, Nano automatically applies modern CPU optimizations (e.g., SIMD, multiprocessing, low precision, etc.) to standard TensorFlow and PyTorch code, with up-to 10x speedup.

Show Nano inference example

You can automatically optimize a trained PyTorch model for inference or deployment using Nano:

model = ResNet18().load_state_dict(...)
train_dataloader = ...
val_dataloader = ...
def accuracy (pred, target):
  ... 

from bigdl.nano.pytorch import InferenceOptimizer
optimizer = InferenceOptimizer()
optimizer.optimize(model,
                   training_data=train_dataloader,
                   validation_data=val_dataloader,
                   metric=accuracy)
new_model, config = optimizer.get_best_model()

optimizer.summary()

The output of optimizer.summary() will be something like:

 -------------------------------- ---------------------- -------------- ----------------------
|             method             |        status        | latency(ms)  |       accuracy       |
 -------------------------------- ---------------------- -------------- ----------------------
|            original            |      successful      |    43.688    |        0.969         |
|           fp32_ipex            |      successful      |    33.383    |    not recomputed    |
|              bf16              |   fail to forward    |     None     |         None         |
|           bf16_ipex            |    early stopped     |   203.897    |         None         |
|              int8              |      successful      |    10.74     |        0.969         |
|            jit_fp32            |      successful      |    38.732    |    not recomputed    |
|         jit_fp32_ipex          |      successful      |    35.205    |    not recomputed    |
|  jit_fp32_ipex_channels_last   |      successful      |    19.327    |    not recomputed    |
|         openvino_fp32          |      successful      |    10.215    |    not recomputed    |
|         openvino_int8          |      successful      |    8.192     |        0.969         |
|        onnxruntime_fp32        |      successful      |    20.931    |    not recomputed    |
|    onnxruntime_int8_qlinear    |      successful      |    8.274     |        0.969         |
|    onnxruntime_int8_integer    |   fail to convert    |     None     |         None         |
 -------------------------------- ---------------------- -------------- ----------------------

Optimization cost 64.3s in total.
Show Nano Training example
You may easily accelerate PyTorch training (e.g., IPEX, BF16, Multi-Instance Training, etc.) using Nano:
model = ResNet18()
optimizer = torch.optim.SGD(...)
train_loader = ...
val_loader = ...

from bigdl.nano.pytorch import TorchNano

# Define your training loop inside `TorchNano.train`
class Trainer(TorchNano):
	def train(self):
	# call `setup` to prepare for model, optimizer(s) and dataloader(s) for accelerated training
	model, optimizer, (train_loader, val_loader) = self.setup(model, optimizer,
  train_loader, val_loader)
  
    for epoch in range(num_epochs):  
      model.train()  
      for data, target in train_loader:  
        optimizer.zero_grad()  
        output = model(data)  
        # replace the loss.backward() with self.backward(loss)  
        loss = loss_fuc(output, target)  
        self.backward(loss)  
        optimizer.step()   

# Accelerated training (IPEX, BF16 and Multi-Instance Training)
Trainer(use_ipex=True, precision='bf16', num_processes=2).train()

See Nano user guide and tutotial for more details.

DLlib

With DLlib, you can write distributed deep learning applications as standard (Scala or Python) Spark programs, using the same Spark DataFrames and ML Pipeline APIs.

Show DLlib Scala example

You can build distributed deep learning applications for Spark using DLlib Scala APIs in 3 simple steps:

// 1. Call `initNNContext` at the beginning of the code: 
import com.intel.analytics.bigdl.dllib.NNContext
val sc = NNContext.initNNContext()

// 2. Define the deep learning model using Keras-style API in DLlib:
import com.intel.analytics.bigdl.dllib.keras.layers._
import com.intel.analytics.bigdl.dllib.keras.Model
val input = Input[Float](inputShape = Shape(10))  
val dense = Dense[Float](12).inputs(input)  
val output = Activation[Float]("softmax").inputs(dense)  
val model = Model(input, output)

// 3. Use `NNEstimator` to train/predict/evaluate the model using Spark DataFrame and ML pipeline APIs
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.feature.MinMaxScaler
import org.apache.spark.ml.Pipeline
import com.intel.analytics.bigdl.dllib.nnframes.NNEstimator
import com.intel.analytics.bigdl.dllib.nn.CrossEntropyCriterion
import com.intel.analytics.bigdl.dllib.optim.Adam
val spark = SparkSession.builder().getOrCreate()
val trainDF = spark.read.parquet("train_data")
val validationDF = spark.read.parquet("val_data")
val scaler = new MinMaxScaler().setInputCol("in").setOutputCol("value")
val estimator = NNEstimator(model, CrossEntropyCriterion())  
        .setBatchSize(128).setOptimMethod(new Adam()).setMaxEpoch(5)
val pipeline = new Pipeline().setStages(Array(scaler, estimator))

val pipelineModel = pipeline.fit(trainDF)  
val predictions = pipelineModel.transform(validationDF)
Show DLlib Python example

You can build distributed deep learning applications for Spark using DLlib Python APIs in 3 simple steps:

# 1. Call `init_nncontext` at the beginning of the code:
from bigdl.dllib.nncontext import init_nncontext
sc = init_nncontext()

# 2. Define the deep learning model using Keras-style API in DLlib:
from bigdl.dllib.keras.layers import Input, Dense, Activation
from bigdl.dllib.keras.models import Model
input = Input(shape=(10,))
dense = Dense(12)(input)
output = Activation("softmax")(dense)
model = Model(input, output)

# 3. Use `NNEstimator` to train/predict/evaluate the model using Spark DataFrame and ML pipeline APIs
from pyspark.sql import SparkSession
from pyspark.ml.feature import MinMaxScaler
from pyspark.ml import Pipeline
from bigdl.dllib.nnframes import NNEstimator
from bigdl.dllib.nn.criterion import CrossEntropyCriterion
from bigdl.dllib.optim.optimizer import Adam
spark = SparkSession.builder.getOrCreate()
train_df = spark.read.parquet("train_data")
validation_df = spark.read.parquet("val_data")
scaler = MinMaxScaler().setInputCol("in").setOutputCol("value")
estimator = NNEstimator(model, CrossEntropyCriterion())\
    .setBatchSize(128)\
    .setOptimMethod(Adam())\
    .setMaxEpoch(5)
pipeline = Pipeline(stages=[scaler, estimator])

pipelineModel = pipeline.fit(train_df)
predictions = pipelineModel.transform(validation_df)

See DLlib NNFrames and Keras API user guides for more details.

Chronos

The Chronos library makes it easy to build fast, accurate and scalable time series analysis applications (with AutoML).

Show Chronos example

You can train a time series forecaster using Chronos in 3 simple steps:

from bigdl.chronos.forecaster import TCNForecaster 
from bigdl.chronos.data.repo_dataset import get_public_dataset

# 1. Process time series data using `TSDataset`
tsdata_train, tsdata_val, tsdata_test = get_public_dataset(name='nyc_taxi')
for tsdata in [tsdata_train, tsdata_val, tsdata_test]:
    data.roll(lookback=100, horizon=1)

# 2. Create a `TCNForecaster` (automatically configured based on train_data)
forecaster = TCNForecaster.from_tsdataset(train_data)

# 3. Train the forecaster for prediction
forecaster.fit(train_data)

pred = forecaster.predict(test_data)

To apply AutoML, use AutoTSEstimator instead of normal forecasters.

# Create and fit an `AutoTSEstimator`
from bigdl.chronos.autots import AutoTSEstimator
autotsest = AutoTSEstimator(model="tcn", future_seq_len=10)

tsppl = autotsest.fit(data=tsdata_train, validation_data=tsdata_val)
pred = tsppl.predict(tsdata_test)

See Chronos user guide and quick start for more details.

Friesian

The Chronos library makes it easy to build end-to-end, large-scale recommedation system (including offline feature transformation and traning, near-line feature and model update, and online serving pipeline).

See Freisian readme for more details.

PPML

BigDL PPML provides a hardware (Intel SGX) protected Trusted Cluster Environment for running distributed Big Data & AI applications (in a secure fashion on private or public cloud).

See PPML tutorial and user guide for more details.

Getting Support


Citation

If you've found BigDL useful for your project, you may cite the paper as follows:

@INPROCEEDINGS{9880257,
  author={Dai, Jason Jinquan and Ding, Ding and Shi, Dongjie and Huang, Shengsheng and Wang, Jiao and Qiu, Xin and Huang, Kai and Song, Guoqiong and Wang, Yang and Gong, Qiyuan and Song, Jiaming and Yu, Shan and Zheng, Le and Chen, Yina and Deng, Junwei and Song, Ge},
  booktitle={2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, 
  title={BigDL 2.0: Seamless Scaling of AI Pipelines from Laptops to Distributed Cluster}, 
  year={2022},
  volume={},
  number={},
  pages={21407-21414},
  doi={10.1109/CVPR52688.2022.02076}}

About

Fast, distributed, secure AI for Big Data

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Languages

  • Jupyter Notebook 69.4%
  • Scala 17.0%
  • Python 10.8%
  • Java 1.7%
  • Shell 0.9%
  • Dockerfile 0.2%