code supplement for variational boosting (
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.


code for Variational Boosting: Iteratively Refining Posterior Approximations


We propose a black-box variational inference method to approximate intractable distributions with an increasingly rich approximating class. Our method, termed variational boosting, iteratively refines an existing variational approximation by solving a sequence of optimization problems, allowing the practitioner to trade computation time for accuracy. We show how to expand the variational approximating class by incorporating additional covariance structure and by introducing new components to form a mixture. We apply variational boosting to synthetic and real statistical models, and show that resulting posterior inferences compare favorably to existing posterior approximation algorithms in both accuracy and efficiency.

Authors: Andrew Miller, Nick Foti, and Ryan Adams.


  • autograd + its requirements (numpy, etc). Our code is compatible with this autograd commit or later. You can install the master version with pip install git+git://
  • pyprind
  • sampyl for MCMC experiments