Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
numpy einsum
Browse files Browse the repository at this point in the history
  • Loading branch information
Fan committed Jul 9, 2019
1 parent 546f3e8 commit 58846a7
Show file tree
Hide file tree
Showing 7 changed files with 1,609 additions and 3 deletions.
203 changes: 202 additions & 1 deletion python/mxnet/ndarray/numpy/_op.py
Expand Up @@ -32,7 +32,7 @@
'add', 'subtract', 'multiply', 'divide', 'mod', 'power', 'concatenate',
'clip', 'split', 'swapaxes', 'expand_dims', 'tile', 'linspace',
'sin', 'cos', 'sinh', 'cosh', 'log10', 'sqrt', 'abs', 'exp', 'arctan', 'sign', 'log',
'degrees', 'log2', 'rint', 'radians', 'mean', 'reciprocal', 'square', 'arcsin']
'degrees', 'log2', 'rint', 'radians', 'mean', 'reciprocal', 'square', 'arcsin', 'einsum']


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -1691,3 +1691,204 @@ def arcsin(x, out=None, **kwargs):
http://www.math.sfu.ca/~cbm/aands/
"""
return _unary_func_helper(x, _npi.arcsin, _np.arcsin, out=out, **kwargs)


@set_module('mxnet.ndarray.numpy')
def einsum(subscripts, *operands, **kwargs):
r"""
einsum(subscripts, *operands, out=None)
Evaluates the Einstein summation convention on the operands.
Using the Einstein summation convention, many common multi-dimensional,
linear algebraic array operations can be represented in a simple fashion.
In *implicit* mode `einsum` computes these values.
In *explicit* mode, `einsum` provides further flexibility to compute
other array operations that might not be considered classical Einstein
summation operations, by disabling, or forcing summation over specified
subscript labels.
See the notes and examples for clarification.
Parameters
----------
subscripts : str
Specifies the subscripts for summation as comma separated list of
subscript labels. An implicit (classical Einstein summation)
calculation is performed unless the explicit indicator '->' is
included as well as subscript labels of the precise output form.
operands : list of ndarray
These are the arrays for the operation.
out : ndarray, optional
If provided, the calculation is done into this array.
Returns
-------
output : ndarray
The calculation based on the Einstein summation convention.
Notes
-----
The Einstein summation convention can be used to compute
many multi-dimensional, linear algebraic array operations. `einsum`
provides a succinct way of representing these.
A non-exhaustive list of these operations,
which can be computed by `einsum`, is shown below along with examples:
* Trace of an array, :py:func:`numpy.trace`.
* Return a diagonal, :py:func:`numpy.diag`.
* Array axis summations, :py:func:`numpy.sum`.
* Transpositions and permutations, :py:func:`numpy.transpose`.
* Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
* Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
* Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
* Tensor contractions, :py:func:`numpy.tensordot`.
The subscripts string is a comma-separated list of subscript labels,
where each label refers to a dimension of the corresponding operand.
Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
describes traditional matrix multiplication and is equivalent to
:py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
to :py:func:`np.trace(a) <numpy.trace>`.
In *implicit mode*, the chosen subscripts are important
since the axes of the output are reordered alphabetically. This
means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
``np.einsum('ji', a)`` takes its transpose. Additionally,
``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
``np.einsum('ij,jh', a, b)`` returns the transpose of the
multiplication since subscript 'h' precedes subscript 'i'.
In *explicit mode* the output can be directly controlled by
specifying output subscript labels. This requires the
identifier '->' as well as the list of output subscript labels.
This feature increases the flexibility of the function since
summing can be disabled or forced when required. The call
``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`,
and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`.
The difference is that `einsum` does not allow broadcasting by default.
Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
order of the output subscript labels and therefore returns matrix
multiplication, unlike the example above in implicit mode.
To enable and control broadcasting, use an ellipsis. Default
NumPy-style broadcasting is done by adding an ellipsis
to the left of each term, like ``np.einsum('...ii->...i', a)``.
To take the trace along the first and last axes,
you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
product with the left-most indices instead of rightmost, one can do
``np.einsum('ij...,jk...->ik...', a, b)``.
When there is only one operand, no axes are summed, and no output
parameter is provided, a view into the operand is returned instead
of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
produces a view (changed in version 1.10.0).
Examples
--------
>>> a = np.arange(25).reshape(5,5)
>>> b = np.arange(5)
>>> c = np.arange(6).reshape(2,3)
Trace of a matrix:
>>> np.einsum('ii', a)
array(60.)
Extract the diagonal (requires explicit form):
>>> np.einsum('ii->i', a)
array([ 0., 6., 12., 18., 24.])
Sum over an axis (requires explicit form):
>>> np.einsum('ij->i', a)
array([ 10., 35., 60., 85., 110.])
>>> np.sum(a, axis=1)
array([ 10., 35., 60., 85., 110.])
For higher dimensional arrays summing a single axis can be done with ellipsis:
>>> np.einsum('...j->...', a)
array([ 10., 35., 60., 85., 110.])
Compute a matrix transpose, or reorder any number of axes:
>>> np.einsum('ji', c)
array([[0., 3.],
[1., 4.],
[2., 5.]])
>>> np.einsum('ij->ji', c)
array([[0., 3.],
[1., 4.],
[2., 5.]])
>>> np.transpose(c)
array([[0., 3.],
[1., 4.],
[2., 5.]])
Vector inner products:
>>> np.einsum('i,i', b, b)
array(30.)
Matrix vector multiplication:
>>> np.einsum('ij,j', a, b)
array([ 30., 80., 130., 180., 230.])
>>> np.dot(a, b)
array([ 30., 80., 130., 180., 230.])
>>> np.einsum('...j,j', a, b)
array([ 30., 80., 130., 180., 230.])
Broadcasting and scalar multiplication:
>>> np.einsum('..., ...', np.array(3), c)
array([[ 0., 3., 6.],
[ 9., 12., 15.]])
>>> np.einsum(',ij', np.array(3), c)
array([[ 0., 3., 6.],
[ 9., 12., 15.]])
>>> np.multiply(3, c)
array([[ 0., 3., 6.],
[ 9., 12., 15.]])
Vector outer product:
>>> np.einsum('i,j', np.arange(2)+1, b)
array([[0., 1., 2., 3., 4.],
[0., 2., 4., 6., 8.]])
Tensor contraction:
>>> a = np.arange(60.).reshape(3,4,5)
>>> b = np.arange(24.).reshape(4,3,2)
>>> np.einsum('ijk,jil->kl', a, b)
array([[4400., 4730.],
[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])
Example of ellipsis use:
>>> a = np.arange(6).reshape((3,2))
>>> b = np.arange(12).reshape((4,3))
>>> np.einsum('ki,jk->ij', a, b)
array([[10., 28., 46., 64.],
[13., 40., 67., 94.]])
>>> np.einsum('ki,...k->i...', a, b)
array([[10., 28., 46., 64.],
[13., 40., 67., 94.]])
>>> np.einsum('k...,jk', a, b)
array([[10., 28., 46., 64.],
[13., 40., 67., 94.]])
"""
out = kwargs.get('out', None)
return _npi.einsum(*operands, subscripts=subscripts, out=out)

0 comments on commit 58846a7

Please sign in to comment.