sensobol
The goal of sensobol is to provide a set of functions to swiftly compute and visualize up to third-order Sobol' sensitivity indices. The functions allow to:
- Create the sample matrices for the model evaluation.
- Compute and bootstrap up to third-order effects.
- Assess the approximation error of Sobol' indices.
- Plot the model uncertainty and the Sobol' indices.
Installation
To install the stable version on CRAN, use
install.packages("sensobol")To install the development version, use devtools:
install.packages("devtools") # if you have not installed devtools package already
devtools::install_github("arnaldpuy/sensobol", build_vignettes = TRUE)Example
This brief example shows how to compute Sobol' indices. For a more detailed explanation of the package functions, check the vignette.
## Load the package:
library(sensobol)
## Define the base sample size and the parameters
N <- 1000
params <- paste("X", 1:3, sep = "")
## Create sample matrix to compute first and total-order indices:
mat <- sobol_matrices(N = N, params = params)
## Compute the model output (using the Ishigami test function):
Y <- ishigami_Mapply(mat)
## Compute and bootstrap the Sobol' indices:
sens <- sobol_indices(Y = Y, N = N, params = params, boot = TRUE, R = 100)Citation
Please use the following citation if you use sensobol in your publications:
Arnald Puy (2019). sensobol: Computation of High-Order Sobol' Sensitivity Indices. R package
version 0.2.2 http://github.com/arnaldpuy/sensobolA BibTex entry for LaTex users is:
@Manual{,
title = {sensobol: Computation of High-Order Sobol' Sensitivity Indices},
author = {Arnald Puy},
year = {2019},
note = {R package version 0.2.0},
url = {http://github.com/arnaldpuy/sensobol},
}