Skip to content

Commit

Permalink
Add particle filter module
Browse files Browse the repository at this point in the history
  • Loading branch information
emilmont committed Mar 17, 2012
1 parent 8ed3a60 commit 9b3dc52
Show file tree
Hide file tree
Showing 4 changed files with 509 additions and 0 deletions.
File renamed without changes.
File renamed without changes.
360 changes: 360 additions & 0 deletions Robotics/particle/homework.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,360 @@
# --------------
# USER INSTRUCTIONS
#
# Now you will put everything together.
#
# First make sure that your sense and move functions
# work as expected for the test cases provided at the
# bottom of the previous two programming assignments.
# Once you are satisfied, copy your sense and move
# definitions into the robot class on this page, BUT
# now include noise.
#
# A good way to include noise in the sense step is to
# add Gaussian noise, centered at zero with variance
# of self.bearing_noise to each bearing. You can do this
# with the command random.gauss(0, self.bearing_noise)
#
# In the move step, you should make sure that your
# actual steering angle is chosen from a Gaussian
# distribution of steering angles. This distribution
# should be centered at the intended steering angle
# with variance of self.steering_noise.
#
# Feel free to use the included set_noise function.
#
# Please do not modify anything except where indicated
# below.

from math import *
import random



# --------
#
# some top level parameters
#

max_steering_angle = pi / 4.0 # You do not need to use this value, but keep in mind the limitations of a real car.
bearing_noise = 0.1 # Noise parameter: should be included in sense function.
steering_noise = 0.1 # Noise parameter: should be included in move function.
distance_noise = 5.0 # Noise parameter: should be included in move function.

tolerance_xy = 15.0 # Tolerance for localization in the x and y directions.
tolerance_orientation = 0.25 # Tolerance for orientation.


# --------
#
# the "world" has 4 landmarks.
# the robot's initial coordinates are somewhere in the square
# represented by the landmarks.
#
# NOTE: Landmark coordinates are given in (y, x) form and NOT
# in the traditional (x, y) format!

landmarks = [[0.0, 100.0], [0.0, 0.0], [100.0, 0.0], [100.0, 100.0]] # position of 4 landmarks in (y, x) format.
world_size = 100.0 # world is NOT cyclic. Robot is allowed to travel "out of bounds"

# ------------------------------------------------
#
# this is the robot class
#

class robot:

# --------
# init:
# creates robot and initializes location/orientation
#

def __init__(self, length = 20.0):
self.x = random.random() * world_size # initial x position
self.y = random.random() * world_size # initial y position
self.orientation = random.random() * 2.0 * pi # initial orientation
self.length = length # length of robot
self.bearing_noise = 0.0 # initialize bearing noise to zero
self.steering_noise = 0.0 # initialize steering noise to zero
self.distance_noise = 0.0 # initialize distance noise to zero

# --------
# set:
# sets a robot coordinate
#

def set(self, new_x, new_y, new_orientation):

if new_orientation < 0 or new_orientation >= 2 * pi:
raise ValueError, 'Orientation must be in [0..2pi]'
self.x = float(new_x)
self.y = float(new_y)
self.orientation = float(new_orientation)

# --------
# set_noise:
# sets the noise parameters
#
def set_noise(self, new_b_noise, new_s_noise, new_d_noise):
# makes it possible to change the noise parameters
# this is often useful in particle filters
self.bearing_noise = float(new_b_noise)
self.steering_noise = float(new_s_noise)
self.distance_noise = float(new_d_noise)

# --------
# measurement_prob
# computes the probability of a measurement
#

def measurement_prob(self, measurements):

# calculate the correct measurement
predicted_measurements = self.sense(0) # Our sense function took 0 as an argument to switch off noise.


# compute errors
error = 1.0
for i in range(len(measurements)):
error_bearing = abs(measurements[i] - predicted_measurements[i])
error_bearing = (error_bearing + pi) % (2.0 * pi) - pi # truncate


# update Gaussian
error *= (exp(- (error_bearing ** 2) / (self.bearing_noise ** 2) / 2.0) /
sqrt(2.0 * pi * (self.bearing_noise ** 2)))

return error

def __repr__(self): #allows us to print robot attributes.
return '[x=%.6s y=%.6s orient=%.6s]' % (str(self.x), str(self.y),
str(self.orientation))

############# ONLY ADD/MODIFY CODE BELOW HERE ###################

# --------
# move:
#

# copy your code from the previous exercise
# and modify it so that it simulates motion noise
# according to the noise parameters
# self.steering_noise
# self.distance_noise
def move(self, motion): # Do not change the name of this function
a, d = motion

a += random.gauss(0.0, self.steering_noise)
d += random.gauss(0.0, self.distance_noise)

new_r = robot(self.length)
new_r.set_noise(self.bearing_noise, self.steering_noise, self.distance_noise)

b = (d / self.length) * tan(a)
if abs(b) < 0.001:
new_r.x = self.x + d * cos(self.orientation)
new_r.y = self.y + d * sin(self.orientation)
else:
r = d / b
cx = self.x - sin(self.orientation) * r
cy = self.y + cos(self.orientation) * r
new_r.x = cx + sin(self.orientation + b) * r
new_r.y = cy - cos(self.orientation + b) * r

new_r.orientation = (self.orientation + b) % (2. * pi)

return new_r

# --------
# sense:
#

# copy your code from the previous exercise
# and modify it so that it simulates bearing noise
# according to
# self.bearing_noise
def sense(self, noise=1): #do not change the name of this function
bearings = []

for y, x in landmarks:
if noise:
b = (atan2(y - self.y, x - self.x) + random.gauss(0, self.bearing_noise) - self.orientation) % (2. * pi)
else:
b = (atan2(y - self.y, x - self.x) - self.orientation) % (2. * pi)
bearings.append(b)

return bearings
############## ONLY ADD/MODIFY CODE ABOVE HERE ####################

# --------
#
# extract position from a particle set
#

def get_position(p):
x = 0.0
y = 0.0
orientation = 0.0
for i in range(len(p)):
x += p[i].x
y += p[i].y
# orientation is tricky because it is cyclic. By normalizing
# around the first particle we are somewhat more robust to
# the 0=2pi problem
orientation += (((p[i].orientation - p[0].orientation + pi) % (2.0 * pi))
+ p[0].orientation - pi)
return [x / len(p), y / len(p), orientation / len(p)]

# --------
#
# The following code generates the measurements vector
# You can use it to develop your solution.
#


def generate_ground_truth(motions):

myrobot = robot()
myrobot.set_noise(bearing_noise, steering_noise, distance_noise)

Z = []
T = len(motions)

for t in range(T):
myrobot = myrobot.move(motions[t])
Z.append(myrobot.sense())
#print 'Robot: ', myrobot
return [myrobot, Z]

# --------
#
# The following code prints the measurements associated
# with generate_ground_truth
#

def print_measurements(Z):

T = len(Z)

print 'measurements = [[%.8s, %.8s, %.8s, %.8s],' % \
(str(Z[0][0]), str(Z[0][1]), str(Z[0][2]), str(Z[0][3]))
for t in range(1,T-1):
print ' [%.8s, %.8s, %.8s, %.8s],' % \
(str(Z[t][0]), str(Z[t][1]), str(Z[t][2]), str(Z[t][3]))
print ' [%.8s, %.8s, %.8s, %.8s]]' % \
(str(Z[T-1][0]), str(Z[T-1][1]), str(Z[T-1][2]), str(Z[T-1][3]))

# --------
#
# The following code checks to see if your particle filter
# localizes the robot to within the desired tolerances
# of the true position. The tolerances are defined at the top.
#

def check_output(final_robot, estimated_position):

error_x = abs(final_robot.x - estimated_position[0])
error_y = abs(final_robot.y - estimated_position[1])
error_orientation = abs(final_robot.orientation - estimated_position[2])
error_orientation = (error_orientation + pi) % (2.0 * pi) - pi
correct = error_x < tolerance_xy and error_y < tolerance_xy \
and error_orientation < tolerance_orientation
return correct



def particle_filter(motions, measurements, N=500): # I know it's tempting, but don't change N!
# --------
#
# Make particles
#

p = []
for i in range(N):
r = robot()
r.set_noise(bearing_noise, steering_noise, distance_noise)
p.append(r)

# --------
#
# Update particles
#

for t in range(len(motions)):

# motion update (prediction)
p2 = []
for i in range(N):
p2.append(p[i].move(motions[t]))
p = p2

# measurement update
w = []
for i in range(N):
w.append(p[i].measurement_prob(measurements[t]))

# resampling
p3 = []
index = int(random.random() * N)
beta = 0.0
mw = max(w)
for i in range(N):
beta += random.random() * 2.0 * mw
while beta > w[index]:
beta -= w[index]
index = (index + 1) % N
p3.append(p[index])
p = p3

return get_position(p)

## IMPORTANT: You may uncomment the test cases below to test your code.
## But when you submit this code, your test cases MUST be commented
## out.
##
## You can test whether your particle filter works using the
## function check_output (see test case 2). We will be using a similar
## function. Note: Even for a well-implemented particle filter this
## function occasionally returns False. This is because a particle
## filter is a randomized algorithm. We will be testing your code
## multiple times. Make sure check_output returns True at least 80%
## of the time.



## --------
## TEST CASES:
##
##1) Calling the particle_filter function with the following
## motions and measurements should return a [x,y,orientation]
## vector near [x=93.476 y=75.186 orient=5.2664], that is, the
## robot's true location.
##
motions = [[2. * pi / 10, 20.] for row in range(8)]
measurements = [[4.746936, 3.859782, 3.045217, 2.045506],
[3.510067, 2.916300, 2.146394, 1.598332],
[2.972469, 2.407489, 1.588474, 1.611094],
[1.906178, 1.193329, 0.619356, 0.807930],
[1.352825, 0.662233, 0.144927, 0.799090],
[0.856150, 0.214590, 5.651497, 1.062401],
[0.194460, 5.660382, 4.761072, 2.471682],
[5.717342, 4.736780, 3.909599, 2.342536]]
##
print particle_filter(motions, measurements)

## 2) You can generate your own test cases by generating
## measurements using the generate_ground_truth function.
## It will print the robot's last location when calling it.
##
##
number_of_iterations = 6
motions = [[2. * pi / 20, 12.] for row in range(number_of_iterations)]

x = generate_ground_truth(motions)
final_robot = x[0]
measurements = x[1]
estimated_position = particle_filter(motions, measurements)
print_measurements(measurements)
print 'Ground truth: ', final_robot
print 'Particle filter: ', estimated_position
print 'Code check: ', check_output(final_robot, estimated_position)
Loading

0 comments on commit 9b3dc52

Please sign in to comment.