New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DeserializationError when editing Data Table #7417

Closed
pmicheletty opened this Issue Jan 16, 2018 · 7 comments

Comments

Projects
None yet
5 participants
@pmicheletty
Copy link

pmicheletty commented Jan 16, 2018

Current environment:

  • Bokeh 0.12.14dev3 (although I think the same error occurs in 0.12.13)
  • Python 3.6
  • Windows 10
  • Google Chrome

When editing or clicking on cells in a data table bokeh will display a DeserializationError:
image

This can be tested with the data_table.py example on the bokeh github. Open that server up and then click on a cell and the error should appear. Not sure where this is coming from, but I do believe it happened somewhere after 0.12.10 (which doesn't produce the error).

@mattpap

This comment has been minimized.

Copy link
Contributor

mattpap commented Jan 16, 2018

Looks like a typed array.

@bryevdv

This comment has been minimized.

Copy link
Member

bryevdv commented Jan 30, 2018

Binary array transport landed in 0.12.9 so it's not directly that.

@bryevdv

This comment has been minimized.

Copy link
Member

bryevdv commented Jan 30, 2018

Also, that example is gone (all the bad examples of bokeh.client "app outside the server" were removed) but here is an updated export_csv that shows the issue:

import pandas as pd

from bokeh.layouts import row, widgetbox
from bokeh.models.widgets import Select, MultiSelect
from bokeh.plotting import curdoc, figure
from bokeh.models import ColumnDataSource, LabelSet
from bokeh.models.ranges import FactorRange
from bokeh.io import show

df = pd.DataFrame(data={
        'category': ['e', 'e', 'f', 'f'],
        'subcategory': ['a', 'b', 'c', 'd'],
        'number': [1, 2, 3, 4],
        'number2': [5, 6, 7, 8]
        })

df['cat_sub'] = list(zip(df.category, df.subcategory))

source = ColumnDataSource(df)

p = figure(plot_width=800,
           y_range=FactorRange(factors=list(df.cat_sub)),
           title='sweet', plot_height=500)

h1 = p.hbar(right="number", y="cat_sub", color='darkgrey',
            height=0.8, source=source)

labels = LabelSet(
        text='number', text_font_size='9pt', level='glyph',
        x='number', y='cat_sub', x_offset=3, y_offset=-6.5,
source=source)

p.add_layout(labels)


def update_source():
    df2 = df.copy()
    df3 = df2[
            df2.category.isin(cats.value)
            & df2.subcategory.isin(subcats.value)]
    print(df3)
    df4 = df3.reindex(columns=['category', 'subcategory', nums.value])
    print(df4)
    df4['cat_sub'] = list(zip(df4.category, df4.subcategory))
    source.data = source.from_df(df4)
    print(source.data)


def update_glyph():
    h1.glyph.right = nums.value
    labels.text = nums.value
    labels.x = nums.value


def update(attr, old, new):
    update_source()
    update_glyph()
    r.children[1] = update_glyph()


catlist_u = df['category'].unique().tolist()
subcatlist_u = df['subcategory'].unique().tolist()

cats = MultiSelect(title='Category', value=['f'], options=catlist_u)

subcats = MultiSelect(title='Subcategory', value=['a'],
                      options=subcatlist_u)

nums = Select(title='Value', value='number2', options=['number', 'number2'])

cats.on_change('value', update)
subcats.on_change('value', update)
nums.on_change('value', update)

w = widgetbox([cats, subcats, nums])

r = row([w, p], sizing_mode="scale_width")

curdoc().add_root(r)
curdoc().title = "test"
@mattpap

This comment has been minimized.

Copy link
Contributor

mattpap commented Jan 30, 2018

I was able to reproduce this with some app examples. I will try to fix it tomorrow.

@bryevdv

This comment has been minimized.

Copy link
Member

bryevdv commented Jan 30, 2018

FYI a potential workaround for now at least is to use python lists for a datatable source:

def update():
    current = df[(df['salary'] >= slider.value[0]) & (df['salary'] <= slider.value[1])].dropna()
    source.data = {
        'name'             : list(current.name),
        'salary'           : list(current.salary),
        'years_experience' : list(current.years_experience),
    }

@bryevdv bryevdv modified the milestones: 0.12.14, 0.12.x Feb 1, 2018

@smilerz

This comment has been minimized.

Copy link

smilerz commented Mar 7, 2018

Note to anyone that uses the workaround @bryevdv suggested:
You have to either drop or fill or otherwise change any NaN or NaT values in your DataFrame before assigning them to the list.

Otherwise the workaround seemed to correct the issue I was having.

@Karel-van-de-Plassche

This comment has been minimized.

Copy link
Contributor

Karel-van-de-Plassche commented Jun 17, 2018

Just to let you know this is still there in `0.13.0dev11'. A minimal(er) example:

import numpy as np

from bokeh.models import ColumnDataSource
from bokeh.io import curdoc, output_notebook, push_notebook, show
from bokeh.models.widgets import DataTable, TableColumn, StringFormatter

data = dict(
X = np.linspace(0, 10), # Wrap with list() to remove the unhandled error
Y = np.linspace(10, 20) # Wrap with list() to remove the unhandled error
)
source = ColumnDataSource(data)

columns = [ 
TableColumn(field="X", title="X",formatter=StringFormatter(font_style="bold",text_color="midnightblue")),TableColumn(field="Y", title="Y",formatter=StringFormatter(font_style="bold",text_color="midnightblue")),
]

data_table = DataTable(source=source,
                       columns=columns,
                       fit_columns=True,
                       width=850, height=280,       
                       editable=True)

curdoc().add_root(data_table)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment