Skip to content
This repository has been archived by the owner on Mar 9, 2019. It is now read-only.

Commit

Permalink
Merge pull request #134 from Shopify/c_cursor
Browse files Browse the repository at this point in the history
C cursor
  • Loading branch information
benbjohnson committed Apr 21, 2014
2 parents 4b0c7e3 + 1bead44 commit afe8123
Show file tree
Hide file tree
Showing 6 changed files with 631 additions and 5 deletions.
10 changes: 10 additions & 0 deletions bucket.go
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,16 @@ func newBucket(tx *Tx) Bucket {
return b
}

// Tx returns the tx of the bucket.
func (b *Bucket) Tx() *Tx {
return b.tx
}

// Root returns the root of the bucket.
func (b *Bucket) Root() pgid {
return b.root
}

// Writable returns whether the bucket is writable.
func (b *Bucket) Writable() bool {
return b.tx.writable
Expand Down
381 changes: 381 additions & 0 deletions c/cursor.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,381 @@
package c

/*
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
// This represents the maximum number of levels that a cursor can traverse.
#define MAX_DEPTH 100
// These flags mark the type of page and are set in the page.flags.
#define PAGE_BRANCH 0x01
#define PAGE_LEAF 0x02
#define PAGE_META 0x04
#define PAGE_FREELIST 0x10
//------------------------------------------------------------------------------
// Typedefs
//------------------------------------------------------------------------------
// These types MUST have the same layout as their corresponding Go types
typedef int64_t pgid;
// Page represents a header struct of a block in the mmap.
typedef struct page {
pgid id;
uint16_t flags;
uint16_t count;
uint32_t overflow;
} page;
// The branch element represents an a item in a branch page
// that points to a child page.
typedef struct branch_element {
uint32_t pos;
uint32_t ksize;
pgid pgid;
} branch_element;
// The leaf element represents an a item in a leaf page
// that points to a key/value pair.
typedef struct leaf_element {
uint32_t flags;
uint32_t pos;
uint32_t ksize;
uint32_t vsize;
} leaf_element;
// elem_ref represents a pointer to an element inside of a page.
// It is used by the cursor stack to track the position at each level.
typedef struct elem_ref {
page *page;
uint16_t index;
} elem_ref;
// bolt_val represents a pointer to a fixed-length series of bytes.
// It is used to represent keys and values returned by the cursor.
typedef struct bolt_val {
uint32_t size;
void *data;
} bolt_val;
// bolt_cursor represents a cursor attached to a bucket.
typedef struct bolt_cursor {
void *data;
pgid root;
size_t pgsz;
int top;
elem_ref stack[MAX_DEPTH];
} bolt_cursor;
//------------------------------------------------------------------------------
// Forward Declarations
//------------------------------------------------------------------------------
elem_ref *cursor_push(bolt_cursor *c, pgid id);
elem_ref *cursor_current(bolt_cursor *c);
elem_ref *cursor_pop(bolt_cursor *c);
void cursor_first_leaf(bolt_cursor *c);
void cursor_key_value(bolt_cursor *c, bolt_val *key, bolt_val *value, uint32_t *flags);
void cursor_search(bolt_cursor *c, bolt_val key, pgid id);
void cursor_search_branch(bolt_cursor *c, bolt_val key);
void cursor_search_leaf(bolt_cursor *c, bolt_val key);
//------------------------------------------------------------------------------
// Public Functions
//------------------------------------------------------------------------------
// Initializes a cursor.
void bolt_cursor_init(bolt_cursor *c, void *data, size_t pgsz, pgid root) {
c->data = data;
c->root = root;
c->pgsz = pgsz;
c->top = -1;
}
// Positions the cursor to the first leaf element and returns the key/value pair.
void bolt_cursor_first(bolt_cursor *c, bolt_val *key, bolt_val *value, uint32_t *flags) {
// reset stack to initial state
elem_ref *ref = cursor_push(c, c->root);
// Find first leaf and return key/value.
cursor_first_leaf(c);
cursor_key_value(c, key, value, flags);
}
// Positions the cursor to the next leaf element and returns the key/value pair.
void bolt_cursor_next(bolt_cursor *c, bolt_val *key, bolt_val *value, uint32_t *flags) {
int i;
elem_ref *ref;
// Attempt to move over one element until we're successful.
// Move up the stack as we hit the end of each page in our stack.
for (ref = cursor_current(c); ref != NULL; ref = cursor_current(c)) {
ref->index++;
if (ref->index < ref->page->count) break;
cursor_pop(c);
};
// If we are at the top of the stack then return a blank key/value pair.
if (ref == NULL) {
key->size = value->size = 0;
key->data = value->data = NULL;
*flags = 0;
return;
};
// Find first leaf and return key/value.
cursor_first_leaf(c);
cursor_key_value(c, key, value, flags);
}
// Positions the cursor first leaf element starting from a given key.
// If there is a matching key then the cursor will be place on that key.
// If there not a match then the cursor will be placed on the next key, if available.
void bolt_cursor_seek(bolt_cursor *c, bolt_val seek, bolt_val *key, bolt_val *value, uint32_t *flags) {
// Start from root page/node and traverse to correct page.
cursor_push(c, c->root);
if (seek.size > 0) cursor_search(c, seek, c->root);
elem_ref *ref = cursor_current(c);
// If the cursor is pointing to the end of page then return nil.
if (ref == NULL) {
key->size = value->size = 0;
key->data = value->data = NULL;
*flags = 0;
return;
};
// Find first leaf and return key/value.
cursor_first_leaf(c);
cursor_key_value(c, key, value, flags);
}
//------------------------------------------------------------------------------
// Private Functions
//------------------------------------------------------------------------------
// Push ref to the first element of the page onto the cursor stack
// If the page is the root page reset the stack to initial state
elem_ref *cursor_push(bolt_cursor *c, pgid id) {
elem_ref *ref;
if (id == c->root)
c->top = 0;
else
c->top++;
ref = &(c->stack[c->top]);
ref->page = (page *)(c->data + (c->pgsz * id));
ref->index = 0;
return ref;
}
// Return current element ref from the cursor stack
// If stack is empty return null
elem_ref *cursor_current(bolt_cursor *c) {
if (c->top < 0) return NULL;
return &c->stack[c->top];
}
// Pop current element ref off the cursor stack
elem_ref *cursor_pop(bolt_cursor *c) {
elem_ref *ref = cursor_current(c);
if (ref != NULL) c->top--;
return ref;
}
// Returns the branch element at a given index on a given page.
branch_element *page_branch_element(page *p, uint16_t index) {
branch_element *elements = (branch_element*)((void*)(p) + sizeof(page));
return &elements[index];
}
// Returns the leaf element at a given index on a given page.
leaf_element *page_leaf_element(page *p, uint16_t index) {
leaf_element *elements = (leaf_element*)((void*)(p) + sizeof(page));
return &elements[index];
}
// Returns the key/value pair for the current position of the cursor.
void cursor_key_value(bolt_cursor *c, bolt_val *key, bolt_val *value, uint32_t *flags) {
elem_ref *ref = cursor_current(c);
leaf_element *elem = page_leaf_element(ref->page,ref->index);
// Assign key pointer.
key->size = elem->ksize;
key->data = ((void*)elem) + elem->pos;
// Assign value pointer.
value->size = elem->vsize;
value->data = key->data + key->size;
// Return the element flags.
*flags = elem->flags;
}
// Traverses from the current stack position down to the first leaf element.
void cursor_first_leaf(bolt_cursor *c) {
elem_ref *ref = cursor_current(c);
while (ref->page->flags & PAGE_BRANCH) {
branch_element *elem = page_branch_element(ref->page,ref->index);
ref = cursor_push(c, elem->pgid);
};
}
// Recursively performs a binary search against a given page/node until it finds a given key.
void cursor_search(bolt_cursor *c, bolt_val key, pgid id) {
// Push page onto the cursor stack.
elem_ref *ref = cursor_push(c, id);
// If we're on a leaf page/node then find the specific node.
if (ref->page->flags & PAGE_LEAF) {
cursor_search_leaf(c, key);
return;
}
// Otherwise search the branch page.
cursor_search_branch(c, key);
}
// Recursively search over a leaf page for a key.
void cursor_search_leaf(bolt_cursor *c, bolt_val key) {
elem_ref *ref = cursor_current(c);
int i;
// HACK: Simply loop over elements to find the right one. Replace with a binary search.
leaf_element *elems = (leaf_element*)((void*)(ref->page) + sizeof(page));
for (i=0; i<ref->page->count; i++) {
leaf_element *elem = &elems[i];
int rc = memcmp(key.data, ((void*)elem) + elem->pos, (elem->ksize < key.size ? elem->ksize : key.size));
// printf("? %.*s | %.*s\n", key.size, key.data, elem->ksize, ((void*)elem) + elem->pos);
// printf("rc=%d; key.size(%d) >= elem->ksize(%d)\n", rc, key.size, elem->ksize);
if ((rc == 0 && key.size >= elem->ksize) || rc < 0) {
ref->index = i;
return;
}
}
// If nothing was greater than the key then pop the current page off the stack.
cursor_pop(c);
}
// Recursively search over a branch page for a key.
void cursor_search_branch(bolt_cursor *c, bolt_val key) {
elem_ref *ref = cursor_current(c);
int i;
// HACK: Simply loop over elements to find the right one. Replace with a binary search.
branch_element *elems = (branch_element*)((void*)(ref->page) + sizeof(page));
for (i=0; i<ref->page->count; i++) {
branch_element *elem = &elems[i];
int rc = memcmp(key.data, ((void*)elem) + elem->pos, (elem->ksize < key.size ? elem->ksize : key.size));
if (rc == 0 && key.size == elem->ksize) {
// exact match, done
ref->index = i;
return;
} else if ((rc == 0 && key.size < elem->ksize) || rc < 0) {
// if key is less than anything in this subtree we are done
if (i == 0) return;
// otherwise search the previous subtree
cursor_search(c, key, elems[i-1].pgid);
// didn't find anything greater than key?
if (cursor_current(c) == ref)
ref->index = i;
else
ref->index = i-1;
return;
}
}
// If nothing was greater than the key then pop the current page off the stack.
cursor_pop(c);
}
*/
import "C"

import (
"fmt"
"os"
"unsafe"

"github.com/boltdb/bolt"
)

// Cursor represents a wrapper around a Bolt C cursor.
type Cursor struct {
C *C.bolt_cursor
}

// NewCursor creates a C cursor from a Bucket.
func NewCursor(b *bolt.Bucket) *Cursor {
info := b.Tx().DB().Info()
root := b.Root()
c := &Cursor{C: new(C.bolt_cursor)}
C.bolt_cursor_init(c.C, unsafe.Pointer(&info.Data[0]), C.size_t(info.PageSize), C.pgid(root))
return c
}

// Next moves the cursor to the first element and returns the key and value.
// Returns a nil key if there are no elements.
func (c *Cursor) First() (key, value []byte) {
var k, v C.bolt_val
var flags C.uint32_t
C.bolt_cursor_first(c.C, &k, &v, &flags)
return C.GoBytes(k.data, C.int(k.size)), C.GoBytes(v.data, C.int(v.size))
}

// Next moves the cursor to the next element and returns the key and value.
// Returns a nil key if there are no more key/value pairs.
func (c *Cursor) Next() (key, value []byte) {
var k, v C.bolt_val
var flags C.uint32_t
C.bolt_cursor_next(c.C, &k, &v, &flags)
return C.GoBytes(k.data, C.int(k.size)), C.GoBytes(v.data, C.int(v.size))
}

// Seek moves the cursor to a given key and returns it.
// If the key does not exist then the next key is used. If no keys
// follow, an empty value is returned.
func (c *Cursor) Seek(seek []byte) (key, value []byte, flags int) {
var _flags C.uint32_t
var _seek, k, v C.bolt_val
if len(seek) > 0 {
_seek.size = C.uint32_t(len(seek))
_seek.data = unsafe.Pointer(&seek[0])
}
C.bolt_cursor_seek(c.C, _seek, &k, &v, &_flags)
//fmt.Printf("Key %v [%v]\n", k.data, k.size)
//fmt.Printf("Value %v [%v]\n", k.data, k.size)
if k.data == nil {
return nil, nil, 0
}
return C.GoBytes(k.data, C.int(k.size)), C.GoBytes(v.data, C.int(v.size)), int(_flags)
}

func warn(v ...interface{}) {
fmt.Fprintln(os.Stderr, v...)
}

func warnf(msg string, v ...interface{}) {
fmt.Fprintf(os.Stderr, msg+"\n", v...)
}
Loading

0 comments on commit afe8123

Please sign in to comment.