Skip to content
master
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

DiscoGAN in PyTorch

PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks.

* All samples in README.md are genearted by neural network except the first image for each row.
* Network structure is slightly diffferent (here) from the author's code.

Requirements

Usage

First download datasets (from pix2pix) with:

$ bash ./data/download_dataset.sh dataset_name

or you can use your own dataset by placing images like:

data
├── YOUR_DATASET_NAME
│   ├── A
│   |   ├── xxx.jpg (name doesn't matter)
│   |   ├── yyy.jpg
│   |   └── ...
│   └── B
│       ├── zzz.jpg
│       ├── www.jpg
│       └── ...
└── download_dataset.sh

All images in each dataset should have same size like using imagemagick:

# for Ubuntu
$ sudo apt-get install imagemagick
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/A/*.jpg
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/B/*.jpg

# for Mac
$ brew install imagemagick
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/A/*.jpg
$ mogrify -resize 256x256! -quality 100 -path YOUR_DATASET_NAME/B/*.jpg

# for scale and center crop
$ mogrify -resize 256x256^ -gravity center -crop 256x256+0+0 -quality 100 -path ../A/*.jpg

To train a model:

$ python main.py --dataset=edges2shoes --num_gpu=1
$ python main.py --dataset=YOUR_DATASET_NAME --num_gpu=4

To test a model (use your load_path):

$ python main.py --dataset=edges2handbags --load_path=logs/edges2handbags_2017-03-18_10-55-37 --num_gpu=0 --is_train=False

Results

1. Toy dataset

Result of samples from 2-dimensional Gaussian mixture models. IPython notebook

# iteration: 0:

# iteration: 10000:

2. Shoes2handbags dataset

# iteration: 11200:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (shoe -> handbag -> shoe)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (handbag -> shoe -> handbag)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

3. Edges2shoes dataset

# iteration: 9600:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (color -> sketch -> color)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (sketch -> color -> sketch)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

4. Edges2handbags dataset

# iteration: 9500:

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (color -> sketch -> color)

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (sketch -> color -> sketch)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) -> G_AB(G_BA(G_AB(x_A))) -> G_BA(G_AB(G_BA(G_AB(x_A)))) -> ...

5. Cityscapes dataset

# iteration: 8350:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

6. Map dataset

# iteration: 22200:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

7. Facades dataset

Generation and reconstruction on dense segmentation dataset looks weird which are not included in the paper.
I guess a naive choice of mean square error loss for reconstruction need some change on this dataset.

# iteration: 19450:

x_B -> G_BA(x_B) -> G_AB(G_BA(x_B)) (image -> segmentation -> image)

x_A -> G_AB(x_A) -> G_BA(G_AB(x_A)) (segmentation -> image -> segmentation)

Related works

Author

Taehoon Kim / @carpedm20

About

PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

Topics

Resources

License

Releases

No releases published
You can’t perform that action at this time.