Skip to content
Quality Control of Oceanographic Data
Python TeX Makefile
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
cotede
docs
joss
tests
.gitattributes
.gitignore
.travis.yml
.zenodo.json
AUTHORS.rst
CONTRIBUTING.rst
HISTORY.rst
LICENSE.rst
MANIFEST.in Moving installing requirements to requirements.txt Mar 30, 2016
Makefile
README.rst
environment.yml
readthedocs.yml
requirements.txt
setup.cfg
setup.py
test-requirements.txt
tox.ini

README.rst

CoTeDe

Documentation Status

CoTeDe is an Open Source Python package to quality control (QC) oceanographic data such as temperature and salinity. It was designed to attend individual scientists as well as real-time operations on large data centers. To achieve that, CoTeDe is highly customizable, giving the user full control to compose the desired set of tests including the specific parameters of each test, or choose from a list of preset QC procedures.

I believe that we can do better than we have been doing with more flexible classification techniques, which includes machine learning. My goal is to minimize the burden on manual expert QC improving the consistency, performance, and reliability of the QC procedure for oceanographic data, especially for real-time operations.

CoTeDe is the result from several generations of quality control systems that started in 2006 with real-time QC of TSGs and were later expanded for other platforms including CTDs, XBTs, gliders, and others.

Why use CoTeDe

CoTeDe contains several QC procedures that can be easily combined in different ways:

  • Pre-set standard tests according to the recommendations by GTSPP, EGOOS, XBT, Argo or QARTOD;
  • Custom set of tests, including user defined thresholds;
  • Two different fuzzy logic approaches: as proposed by Timms et. al 2011 & Morello et. al. 2014, and using usual defuzification by the bisector;
  • A novel approach based on Anomaly Detection, described by Castelao 2015.

Each measuring platform is a different realm with its own procedures, metadata, and meaningful visualization. So CoTeDe focuses on providing a robust framework with the procedures and lets each application, and the user, to decide how to drive the QC. For instance, the pySeabird package is another package that understands CTD and uses CoTeDe as a plugin to QC.

Documentation

A detailed documentation is available at http://cotede.readthedocs.org, while a collection of notebooks with examples is available at http://nbviewer.ipython.org/github/castelao/CoTeDe/tree/master/docs/notebooks/

You can’t perform that action at this time.