Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
branch: master
Fetching contributors…

Cannot retrieve contributors at this time

66 lines (57 sloc) 2.525 kB
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--Converted with LaTeX2HTML 2008 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Verbs</TITLE>
<META NAME="description" CONTENT="Verbs">
<META NAME="keywords" CONTENT="egpaper_final">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2008">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="egpaper_final.css">
<LINK REL="next" HREF="node18.html">
<LINK REL="previous" HREF="node16.html">
<LINK REL="up" HREF="node9.html">
<LINK REL="next" HREF="node18.html">
</HEAD>
<BODY >
<DIV CLASS="navigation"><!--Navigation Panel-->
<A NAME="tex2html208"
HREF="node18.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next"
SRC="/usr/share/latex2html/icons/next.png"></A>
<A NAME="tex2html206"
HREF="node9.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up"
SRC="/usr/share/latex2html/icons/up.png"></A>
<A NAME="tex2html200"
HREF="node16.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous"
SRC="/usr/share/latex2html/icons/prev.png"></A>
<BR>
<B> Next:</B> <A NAME="tex2html209"
HREF="node18.html">Majority Voting</A>
<B> Up:</B> <A NAME="tex2html207"
HREF="node9.html">Results</A>
<B> Previous:</B> <A NAME="tex2html201"
HREF="node16.html">Adjectives</A>
<BR>
<BR></DIV>
<!--End of Navigation Panel-->
<H2><A NAME="SECTION00068000000000000000">
Verbs</A>
</H2>
As in the motivating example for the use of POS tagging, it was in the case of the verb use of ``love'' (``I love this movie'') that conveyed sentimental information, rather than the adjective use of the word. Interestingly, Pang did not include results for training only on verbs. Even more interestingly, despite the motivating example, verbs under-performed all other tests, while still being consistently better than random. The tests ranged from 60% to 67% accuracy, even sometimes doing worse than the 64% accurate human-based classifier from Pang 2002. We suspect this is in part due to the sparsity of features when only using verbs, as there were on average 37.2 verbs and 55.7 adjectives per review.
<P>
<BR><HR>
<ADDRESS>
Pranjal Vachaspati
2012-02-05
</ADDRESS>
</BODY>
</HTML>
Jump to Line
Something went wrong with that request. Please try again.