Permalink
Find file
Fetching contributors…
Cannot retrieve contributors at this time
4139 lines (3578 sloc) 107 KB
/*
* Synaptics DSX touchscreen driver
*
* Copyright (C) 2012 Synaptics Incorporated
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/input/synaptics_dsx_v2.h>
#include "synaptics_dsx_core.h"
#ifdef KERNEL_ABOVE_2_6_38
#include <linux/input/mt.h>
#endif
#if defined(CONFIG_SECURE_TOUCH)
#include <linux/errno.h>
#endif
#define INPUT_PHYS_NAME "synaptics_dsx/input0"
#define DEBUGFS_DIR_NAME "ts_debug"
#ifdef KERNEL_ABOVE_2_6_38
#define TYPE_B_PROTOCOL
#endif
#define NO_0D_WHILE_2D
#define REPORT_2D_Z
#define REPORT_2D_W
#define F12_DATA_15_WORKAROUND
/*
#define IGNORE_FN_INIT_FAILURE
*/
#define RPT_TYPE (1 << 0)
#define RPT_X_LSB (1 << 1)
#define RPT_X_MSB (1 << 2)
#define RPT_Y_LSB (1 << 3)
#define RPT_Y_MSB (1 << 4)
#define RPT_Z (1 << 5)
#define RPT_WX (1 << 6)
#define RPT_WY (1 << 7)
#define RPT_DEFAULT (RPT_TYPE | RPT_X_LSB | RPT_X_MSB | RPT_Y_LSB | RPT_Y_MSB)
#define EXP_FN_WORK_DELAY_MS 1000 /* ms */
#define MAX_F11_TOUCH_WIDTH 15
#define CHECK_STATUS_TIMEOUT_MS 100
#define F01_STD_QUERY_LEN 21
#define F01_BUID_ID_OFFSET 18
#define F11_STD_QUERY_LEN 9
#define F11_STD_CTRL_LEN 10
#define F11_STD_DATA_LEN 12
#define STATUS_NO_ERROR 0x00
#define STATUS_RESET_OCCURRED 0x01
#define STATUS_INVALID_CONFIG 0x02
#define STATUS_DEVICE_FAILURE 0x03
#define STATUS_CONFIG_CRC_FAILURE 0x04
#define STATUS_FIRMWARE_CRC_FAILURE 0x05
#define STATUS_CRC_IN_PROGRESS 0x06
#define NORMAL_OPERATION (0 << 0)
#define SENSOR_SLEEP (1 << 0)
#define NO_SLEEP_OFF (0 << 2)
#define NO_SLEEP_ON (1 << 2)
#define CONFIGURED (1 << 7)
#define SYNA_F11_MAX 4096
#define SYNA_F12_MAX 65536
static int synaptics_rmi4_f12_set_enables(struct synaptics_rmi4_data *rmi4_data,
unsigned short ctrl28);
static int synaptics_rmi4_free_fingers(struct synaptics_rmi4_data *rmi4_data);
static int synaptics_rmi4_reinit_device(struct synaptics_rmi4_data *rmi4_data);
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data);
static ssize_t synaptics_rmi4_full_pm_cycle_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_full_pm_cycle_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
#if defined(CONFIG_FB)
static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data);
#elif defined(CONFIG_HAS_EARLYSUSPEND)
static void synaptics_rmi4_early_suspend(struct early_suspend *h);
static void synaptics_rmi4_late_resume(struct early_suspend *h);
#endif
static int synaptics_rmi4_suspend(struct device *dev);
static int synaptics_rmi4_resume(struct device *dev);
static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static irqreturn_t synaptics_rmi4_irq(int irq, void *data);
#if defined(CONFIG_SECURE_TOUCH)
static ssize_t synaptics_secure_touch_enable_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_secure_touch_enable_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_secure_touch_show(struct device *dev,
struct device_attribute *attr, char *buf);
#endif
struct synaptics_rmi4_f01_device_status {
union {
struct {
unsigned char status_code:4;
unsigned char reserved:2;
unsigned char flash_prog:1;
unsigned char unconfigured:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f12_query_5 {
union {
struct {
unsigned char size_of_query6;
struct {
unsigned char ctrl0_is_present:1;
unsigned char ctrl1_is_present:1;
unsigned char ctrl2_is_present:1;
unsigned char ctrl3_is_present:1;
unsigned char ctrl4_is_present:1;
unsigned char ctrl5_is_present:1;
unsigned char ctrl6_is_present:1;
unsigned char ctrl7_is_present:1;
} __packed;
struct {
unsigned char ctrl8_is_present:1;
unsigned char ctrl9_is_present:1;
unsigned char ctrl10_is_present:1;
unsigned char ctrl11_is_present:1;
unsigned char ctrl12_is_present:1;
unsigned char ctrl13_is_present:1;
unsigned char ctrl14_is_present:1;
unsigned char ctrl15_is_present:1;
} __packed;
struct {
unsigned char ctrl16_is_present:1;
unsigned char ctrl17_is_present:1;
unsigned char ctrl18_is_present:1;
unsigned char ctrl19_is_present:1;
unsigned char ctrl20_is_present:1;
unsigned char ctrl21_is_present:1;
unsigned char ctrl22_is_present:1;
unsigned char ctrl23_is_present:1;
} __packed;
struct {
unsigned char ctrl24_is_present:1;
unsigned char ctrl25_is_present:1;
unsigned char ctrl26_is_present:1;
unsigned char ctrl27_is_present:1;
unsigned char ctrl28_is_present:1;
unsigned char ctrl29_is_present:1;
unsigned char ctrl30_is_present:1;
unsigned char ctrl31_is_present:1;
} __packed;
};
unsigned char data[5];
};
};
struct synaptics_rmi4_f12_query_8 {
union {
struct {
unsigned char size_of_query9;
struct {
unsigned char data0_is_present:1;
unsigned char data1_is_present:1;
unsigned char data2_is_present:1;
unsigned char data3_is_present:1;
unsigned char data4_is_present:1;
unsigned char data5_is_present:1;
unsigned char data6_is_present:1;
unsigned char data7_is_present:1;
} __packed;
struct {
unsigned char data8_is_present:1;
unsigned char data9_is_present:1;
unsigned char data10_is_present:1;
unsigned char data11_is_present:1;
unsigned char data12_is_present:1;
unsigned char data13_is_present:1;
unsigned char data14_is_present:1;
unsigned char data15_is_present:1;
} __packed;
};
unsigned char data[3];
};
};
struct synaptics_rmi4_f12_ctrl_8 {
union {
struct {
unsigned char max_x_coord_lsb;
unsigned char max_x_coord_msb;
unsigned char max_y_coord_lsb;
unsigned char max_y_coord_msb;
unsigned char rx_pitch_lsb;
unsigned char rx_pitch_msb;
unsigned char tx_pitch_lsb;
unsigned char tx_pitch_msb;
unsigned char low_rx_clip;
unsigned char high_rx_clip;
unsigned char low_tx_clip;
unsigned char high_tx_clip;
unsigned char num_of_rx;
unsigned char num_of_tx;
};
unsigned char data[14];
};
};
struct synaptics_rmi4_f12_ctrl_23 {
union {
struct {
unsigned char obj_type_enable;
unsigned char max_reported_objects;
};
unsigned char data[2];
};
};
struct synaptics_rmi4_f12_finger_data {
unsigned char object_type_and_status;
unsigned char x_lsb;
unsigned char x_msb;
unsigned char y_lsb;
unsigned char y_msb;
#ifdef REPORT_2D_Z
unsigned char z;
#endif
#ifdef REPORT_2D_W
unsigned char wx;
unsigned char wy;
#endif
};
struct synaptics_rmi4_f1a_query {
union {
struct {
unsigned char max_button_count:3;
unsigned char reserved:5;
unsigned char has_general_control:1;
unsigned char has_interrupt_enable:1;
unsigned char has_multibutton_select:1;
unsigned char has_tx_rx_map:1;
unsigned char has_perbutton_threshold:1;
unsigned char has_release_threshold:1;
unsigned char has_strongestbtn_hysteresis:1;
unsigned char has_filter_strength:1;
} __packed;
unsigned char data[2];
};
};
struct synaptics_rmi4_f1a_control_0 {
union {
struct {
unsigned char multibutton_report:2;
unsigned char filter_mode:2;
unsigned char reserved:4;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f1a_control {
struct synaptics_rmi4_f1a_control_0 general_control;
unsigned char button_int_enable;
unsigned char multi_button;
unsigned char *txrx_map;
unsigned char *button_threshold;
unsigned char button_release_threshold;
unsigned char strongest_button_hysteresis;
unsigned char filter_strength;
};
struct synaptics_rmi4_f1a_handle {
int button_bitmask_size;
unsigned char max_count;
unsigned char valid_button_count;
unsigned char *button_data_buffer;
unsigned char *button_map;
struct synaptics_rmi4_f1a_query button_query;
struct synaptics_rmi4_f1a_control button_control;
};
struct synaptics_rmi4_exp_fhandler {
struct synaptics_rmi4_exp_fn *exp_fn;
bool insert;
bool remove;
struct list_head link;
};
struct synaptics_rmi4_exp_fn_data {
bool initialized;
bool queue_work;
struct mutex mutex;
struct list_head list;
struct delayed_work work;
struct workqueue_struct *workqueue;
struct synaptics_rmi4_data *rmi4_data;
};
static struct synaptics_rmi4_exp_fn_data exp_data;
static struct device_attribute attrs[] = {
__ATTR(full_pm_cycle, (S_IRUGO | S_IWUSR | S_IWGRP),
synaptics_rmi4_full_pm_cycle_show,
synaptics_rmi4_full_pm_cycle_store),
__ATTR(reset, (S_IWUSR | S_IWGRP),
NULL,
synaptics_rmi4_f01_reset_store),
__ATTR(productinfo, S_IRUGO,
synaptics_rmi4_f01_productinfo_show,
synaptics_rmi4_store_error),
__ATTR(buildid, S_IRUGO,
synaptics_rmi4_f01_buildid_show,
synaptics_rmi4_store_error),
__ATTR(flashprog, S_IRUGO,
synaptics_rmi4_f01_flashprog_show,
synaptics_rmi4_store_error),
__ATTR(0dbutton, (S_IRUGO | S_IWUSR | S_IWGRP),
synaptics_rmi4_0dbutton_show,
synaptics_rmi4_0dbutton_store),
#if defined(CONFIG_SECURE_TOUCH)
__ATTR(secure_touch_enable, (S_IRUGO | S_IWUGO),
synaptics_secure_touch_enable_show,
synaptics_secure_touch_enable_store),
__ATTR(secure_touch, S_IRUGO ,
synaptics_secure_touch_show,
NULL),
#endif
};
#define MAX_BUF_SIZE 256
#define VKEY_VER_CODE "0x01"
#define HEIGHT_SCALE_NUM 8
#define HEIGHT_SCALE_DENOM 10
/* numerator and denomenator for border equations */
#define BORDER_ADJUST_NUM 3
#define BORDER_ADJUST_DENOM 4
static struct kobject *vkey_kobj;
static char *vkey_buf;
static ssize_t vkey_show(struct kobject *obj,
struct kobj_attribute *attr, char *buf)
{
strlcpy(buf, vkey_buf, MAX_BUF_SIZE);
return strnlen(buf, MAX_BUF_SIZE);
}
static struct kobj_attribute vkey_obj_attr = {
.attr = {
.mode = S_IRUGO,
.name = "virtualkeys."PLATFORM_DRIVER_NAME,
},
.show = vkey_show,
};
static struct attribute *vkey_attr[] = {
&vkey_obj_attr.attr,
NULL,
};
static struct attribute_group vkey_grp = {
.attrs = vkey_attr,
};
static int synaptics_rmi4_debug_suspend_set(void *_data, u64 val)
{
struct synaptics_rmi4_data *rmi4_data = _data;
if (val)
synaptics_rmi4_suspend(&rmi4_data->input_dev->dev);
else
synaptics_rmi4_resume(&rmi4_data->input_dev->dev);
return 0;
}
static int synaptics_rmi4_debug_suspend_get(void *_data, u64 *val)
{
struct synaptics_rmi4_data *rmi4_data = _data;
*val = rmi4_data->suspended;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(debug_suspend_fops, synaptics_rmi4_debug_suspend_get,
synaptics_rmi4_debug_suspend_set, "%lld\n");
#if defined(CONFIG_SECURE_TOUCH)
static void synaptics_secure_touch_init(struct synaptics_rmi4_data *data)
{
int ret = 0;
data->st_initialized = 0;
init_completion(&data->st_powerdown);
init_completion(&data->st_irq_processed);
/* Get clocks */
data->core_clk = clk_get(data->pdev->dev.parent, "core_clk");
if (IS_ERR(data->core_clk)) {
ret = PTR_ERR(data->core_clk);
dev_err(data->pdev->dev.parent,
"%s: error on clk_get(core_clk):%d\n", __func__, ret);
return;
}
data->iface_clk = clk_get(data->pdev->dev.parent, "iface_clk");
if (IS_ERR(data->iface_clk)) {
ret = PTR_ERR(data->iface_clk);
dev_err(data->pdev->dev.parent,
"%s: error on clk_get(iface_clk):%d\n", __func__, ret);
goto err_iface_clk;
}
data->st_initialized = 1;
return;
err_iface_clk:
clk_put(data->core_clk);
data->core_clk = NULL;
}
static void synaptics_secure_touch_notify(struct synaptics_rmi4_data *rmi4_data)
{
sysfs_notify(&rmi4_data->input_dev->dev.kobj, NULL, "secure_touch");
}
static irqreturn_t synaptics_filter_interrupt(
struct synaptics_rmi4_data *rmi4_data)
{
if (atomic_read(&rmi4_data->st_enabled)) {
if (atomic_cmpxchg(&rmi4_data->st_pending_irqs, 0, 1) == 0) {
synaptics_secure_touch_notify(rmi4_data);
wait_for_completion_interruptible(
&rmi4_data->st_irq_processed);
}
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static void synaptics_secure_touch_stop(
struct synaptics_rmi4_data *rmi4_data,
int blocking)
{
if (atomic_read(&rmi4_data->st_enabled)) {
atomic_set(&rmi4_data->st_pending_irqs, -1);
synaptics_secure_touch_notify(rmi4_data);
if (blocking)
wait_for_completion_interruptible(
&rmi4_data->st_powerdown);
}
}
#else
static void synaptics_secure_touch_init(struct synaptics_rmi4_data *rmi4_data)
{
}
static irqreturn_t synaptics_filter_interrupt(
struct synaptics_rmi4_data *rmi4_data)
{
return IRQ_NONE;
}
static void synaptics_secure_touch_stop(
struct synaptics_rmi4_data *rmi4_data,
int blocking)
{
}
#endif
#if defined(CONFIG_SECURE_TOUCH)
static ssize_t synaptics_secure_touch_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return scnprintf(
buf,
PAGE_SIZE,
"%d",
atomic_read(&rmi4_data->st_enabled));
}
/*
* Accept only "0" and "1" valid values.
* "0" will reset the st_enabled flag, then wake up the reading process and
* the interrupt handler.
* The bus driver is notified via pm_runtime that it is not required to stay
* awake anymore.
* It will also make sure the queue of events is emptied in the controller,
* in case a touch happened in between the secure touch being disabled and
* the local ISR being ungated.
* "1" will set the st_enabled flag and clear the st_pending_irqs flag.
* The bus driver is requested via pm_runtime to stay awake.
*/
static ssize_t synaptics_secure_touch_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
unsigned long value;
int err = 0;
if (count > 2)
return -EINVAL;
err = kstrtoul(buf, 10, &value);
if (err != 0)
return err;
if (!rmi4_data->st_initialized)
return -EIO;
err = count;
switch (value) {
case 0:
if (atomic_read(&rmi4_data->st_enabled) == 0)
break;
synaptics_rmi4_bus_put(rmi4_data);
atomic_set(&rmi4_data->st_enabled, 0);
synaptics_secure_touch_notify(rmi4_data);
complete(&rmi4_data->st_irq_processed);
synaptics_rmi4_irq(rmi4_data->irq, rmi4_data);
complete(&rmi4_data->st_powerdown);
break;
case 1:
if (atomic_read(&rmi4_data->st_enabled)) {
err = -EBUSY;
break;
}
synchronize_irq(rmi4_data->irq);
if (synaptics_rmi4_bus_get(rmi4_data) < 0) {
dev_err(
rmi4_data->pdev->dev.parent,
"synaptics_rmi4_bus_get failed\n");
err = -EIO;
break;
}
INIT_COMPLETION(rmi4_data->st_powerdown);
INIT_COMPLETION(rmi4_data->st_irq_processed);
atomic_set(&rmi4_data->st_enabled, 1);
atomic_set(&rmi4_data->st_pending_irqs, 0);
break;
default:
dev_err(
rmi4_data->pdev->dev.parent,
"unsupported value: %lu\n", value);
err = -EINVAL;
break;
}
return err;
}
/*
* This function returns whether there are pending interrupts, or
* other error conditions that need to be signaled to the userspace library,
* according tot he following logic:
* - st_enabled is 0 if secure touch is not enabled, returning -EBADF
* - st_pending_irqs is -1 to signal that secure touch is in being stopped,
* returning -EINVAL
* - st_pending_irqs is 1 to signal that there is a pending irq, returning
* the value "1" to the sysfs read operation
* - st_pending_irqs is 0 (only remaining case left) if the pending interrupt
* has been processed, so the interrupt handler can be allowed to continue.
*/
static ssize_t synaptics_secure_touch_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
int val = 0;
if (atomic_read(&rmi4_data->st_enabled) == 0)
return -EBADF;
if (atomic_cmpxchg(&rmi4_data->st_pending_irqs, -1, 0) == -1)
return -EINVAL;
if (atomic_cmpxchg(&rmi4_data->st_pending_irqs, 1, 0) == 1)
val = 1;
else
complete(&rmi4_data->st_irq_processed);
return scnprintf(buf, PAGE_SIZE, "%u", val);
}
#endif
static ssize_t synaptics_rmi4_full_pm_cycle_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->full_pm_cycle);
}
static ssize_t synaptics_rmi4_full_pm_cycle_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
rmi4_data->full_pm_cycle = input > 0 ? 1 : 0;
return count;
}
static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int reset;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &reset) != 1)
return -EINVAL;
if (reset != 1)
return -EINVAL;
retval = synaptics_rmi4_reset_device(rmi4_data);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
return retval;
}
return count;
}
static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "0x%02x 0x%02x\n",
(rmi4_data->rmi4_mod_info.product_info[0]),
(rmi4_data->rmi4_mod_info.product_info[1]));
}
static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->firmware_id);
}
static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int retval;
struct synaptics_rmi4_f01_device_status device_status;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_data_base_addr,
device_status.data,
sizeof(device_status.data));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read device status, error = %d\n",
__func__, retval);
return retval;
}
return snprintf(buf, PAGE_SIZE, "%u\n",
device_status.flash_prog);
}
static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->button_0d_enabled);
}
static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
unsigned char ii;
unsigned char intr_enable;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
input = input > 0 ? 1 : 0;
if (rmi4_data->button_0d_enabled == input)
return count;
if (list_empty(&rmi->support_fn_list))
return -ENODEV;
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) {
ii = fhandler->intr_reg_num;
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr + 1 + ii,
&intr_enable,
sizeof(intr_enable));
if (retval < 0)
return retval;
if (input == 1)
intr_enable |= fhandler->intr_mask;
else
intr_enable &= ~fhandler->intr_mask;
retval = synaptics_rmi4_reg_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr + 1 + ii,
&intr_enable,
sizeof(intr_enable));
if (retval < 0)
return retval;
}
}
rmi4_data->button_0d_enabled = input;
return count;
}
/**
* synaptics_rmi4_f11_abs_report()
*
* Called by synaptics_rmi4_report_touch() when valid Function $11
* finger data has been detected.
*
* This function reads the Function $11 data registers, determines the
* status of each finger supported by the Function, processes any
* necessary coordinate manipulation, reports the finger data to
* the input subsystem, and returns the number of fingers detected.
*/
static int synaptics_rmi4_f11_abs_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char touch_count = 0; /* number of touch points */
unsigned char reg_index;
unsigned char finger;
unsigned char fingers_supported;
unsigned char num_of_finger_status_regs;
unsigned char finger_shift;
unsigned char finger_status;
unsigned char data_reg_blk_size;
unsigned char finger_status_reg[3];
unsigned char data[F11_STD_DATA_LEN];
unsigned short data_addr;
unsigned short data_offset;
int x;
int y;
int wx;
int wy;
int temp;
/*
* The number of finger status registers is determined by the
* maximum number of fingers supported - 2 bits per finger. So
* the number of finger status registers to read is:
* register_count = ceil(max_num_of_fingers / 4)
*/
fingers_supported = fhandler->num_of_data_points;
num_of_finger_status_regs = (fingers_supported + 3) / 4;
data_addr = fhandler->full_addr.data_base;
data_reg_blk_size = fhandler->size_of_data_register_block;
retval = synaptics_rmi4_reg_read(rmi4_data,
data_addr,
finger_status_reg,
num_of_finger_status_regs);
if (retval < 0)
return 0;
for (finger = 0; finger < fingers_supported; finger++) {
reg_index = finger / 4;
finger_shift = (finger % 4) * 2;
finger_status = (finger_status_reg[reg_index] >> finger_shift)
& MASK_2BIT;
/*
* Each 2-bit finger status field represents the following:
* 00 = finger not present
* 01 = finger present and data accurate
* 10 = finger present but data may be inaccurate
* 11 = reserved
*/
#ifdef TYPE_B_PROTOCOL
input_mt_slot(rmi4_data->input_dev, finger);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, finger_status);
#endif
if (finger_status) {
data_offset = data_addr +
num_of_finger_status_regs +
(finger * data_reg_blk_size);
retval = synaptics_rmi4_reg_read(rmi4_data,
data_offset,
data,
data_reg_blk_size);
if (retval < 0)
return 0;
x = (data[0] << 4) | (data[2] & MASK_4BIT);
y = (data[1] << 4) | ((data[2] >> 4) & MASK_4BIT);
wx = (data[3] & MASK_4BIT);
wy = (data[3] >> 4) & MASK_4BIT;
if (rmi4_data->hw_if->board_data->swap_axes) {
temp = x;
x = y;
y = temp;
temp = wx;
wx = wy;
wy = temp;
}
if (rmi4_data->hw_if->board_data->x_flip)
x = rmi4_data->sensor_max_x - x;
if (rmi4_data->hw_if->board_data->y_flip)
y = rmi4_data->sensor_max_y - y;
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 1);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 1);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_X, x);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_Y, y);
#ifdef REPORT_2D_W
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, max(wx, wy));
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, min(wx, wy));
#endif
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Finger %d:\n"
"status = 0x%02x\n"
"x = %d\n"
"y = %d\n"
"wx = %d\n"
"wy = %d\n",
__func__, finger,
finger_status,
x, y, wx, wy);
touch_count++;
}
}
if (touch_count == 0) {
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 0);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 0);
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
}
input_sync(rmi4_data->input_dev);
return touch_count;
}
/**
* synaptics_rmi4_f12_abs_report()
*
* Called by synaptics_rmi4_report_touch() when valid Function $12
* finger data has been detected.
*
* This function reads the Function $12 data registers, determines the
* status of each finger supported by the Function, processes any
* necessary coordinate manipulation, reports the finger data to
* the input subsystem, and returns the number of fingers detected.
*/
static int synaptics_rmi4_f12_abs_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char touch_count = 0; /* number of touch points */
unsigned char finger;
unsigned char fingers_to_process;
unsigned char finger_status;
unsigned char size_of_2d_data;
unsigned short data_addr;
int x;
int y;
int wx;
int wy;
int temp;
struct synaptics_rmi4_f12_extra_data *extra_data;
struct synaptics_rmi4_f12_finger_data *data;
struct synaptics_rmi4_f12_finger_data *finger_data;
#ifdef F12_DATA_15_WORKAROUND
static unsigned char fingers_already_present;
#endif
fingers_to_process = fhandler->num_of_data_points;
data_addr = fhandler->full_addr.data_base;
extra_data = (struct synaptics_rmi4_f12_extra_data *)fhandler->extra;
size_of_2d_data = sizeof(struct synaptics_rmi4_f12_finger_data);
/* Determine the total number of fingers to process */
if (extra_data->data15_size) {
retval = synaptics_rmi4_reg_read(rmi4_data,
data_addr + extra_data->data15_offset,
extra_data->data15_data,
extra_data->data15_size);
if (retval < 0)
return 0;
/* Start checking from the highest bit */
temp = extra_data->data15_size - 1; /* Highest byte */
finger = (fingers_to_process - 1) % 8; /* Highest bit */
do {
if (extra_data->data15_data[temp] & (1 << finger))
break;
if (finger) {
finger--;
} else {
temp--; /* Move to the next lower byte */
finger = 7;
}
fingers_to_process--;
} while (fingers_to_process);
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Number of fingers to process = %d\n",
__func__, fingers_to_process);
}
#ifdef F12_DATA_15_WORKAROUND
fingers_to_process = max(fingers_to_process, fingers_already_present);
#endif
if (!fingers_to_process) {
synaptics_rmi4_free_fingers(rmi4_data);
return 0;
}
retval = synaptics_rmi4_reg_read(rmi4_data,
data_addr + extra_data->data1_offset,
(unsigned char *)fhandler->data,
fingers_to_process * size_of_2d_data);
if (retval < 0)
return 0;
data = (struct synaptics_rmi4_f12_finger_data *)fhandler->data;
for (finger = 0; finger < fingers_to_process; finger++) {
finger_data = data + finger;
finger_status = finger_data->object_type_and_status;
if (finger_status == F12_FINGER_STATUS) {
#ifdef TYPE_B_PROTOCOL
input_mt_slot(rmi4_data->input_dev, finger);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, 1);
#endif
#ifdef F12_DATA_15_WORKAROUND
fingers_already_present = finger + 1;
#endif
x = (finger_data->x_msb << 8) | (finger_data->x_lsb);
y = (finger_data->y_msb << 8) | (finger_data->y_lsb);
#ifdef REPORT_2D_W
wx = finger_data->wx;
wy = finger_data->wy;
#endif
if (rmi4_data->hw_if->board_data->swap_axes) {
temp = x;
x = y;
y = temp;
temp = wx;
wx = wy;
wy = temp;
}
if (rmi4_data->hw_if->board_data->x_flip)
x = rmi4_data->sensor_max_x - x;
if (rmi4_data->hw_if->board_data->y_flip)
y = rmi4_data->sensor_max_y - y;
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 1);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 1);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_X, x);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_Y, y);
#ifdef REPORT_2D_W
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, max(wx, wy));
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, min(wx, wy));
#endif
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Finger %d:\n"
"status = 0x%02x\n"
"x = %d\n"
"y = %d\n"
"wx = %d\n"
"wy = %d\n",
__func__, finger,
finger_status,
x, y, wx, wy);
touch_count++;
} else {
#ifdef TYPE_B_PROTOCOL
input_mt_slot(rmi4_data->input_dev, finger);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, 0);
#endif
}
}
if (touch_count == 0) {
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 0);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 0);
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
}
input_sync(rmi4_data->input_dev);
return touch_count;
}
static void synaptics_rmi4_f1a_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char touch_count = 0;
unsigned char button;
unsigned char index;
unsigned char shift;
unsigned char status;
unsigned char *data;
unsigned short data_addr = fhandler->full_addr.data_base;
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
static unsigned char do_once = 1;
static bool current_status[MAX_NUMBER_OF_BUTTONS];
#ifdef NO_0D_WHILE_2D
static bool before_2d_status[MAX_NUMBER_OF_BUTTONS];
static bool while_2d_status[MAX_NUMBER_OF_BUTTONS];
#endif
if (do_once) {
memset(current_status, 0, sizeof(current_status));
#ifdef NO_0D_WHILE_2D
memset(before_2d_status, 0, sizeof(before_2d_status));
memset(while_2d_status, 0, sizeof(while_2d_status));
#endif
do_once = 0;
}
retval = synaptics_rmi4_reg_read(rmi4_data,
data_addr,
f1a->button_data_buffer,
f1a->button_bitmask_size);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read button data registers\n",
__func__);
return;
}
data = f1a->button_data_buffer;
for (button = 0; button < f1a->valid_button_count; button++) {
index = button / 8;
shift = button % 8;
status = ((data[index] >> shift) & MASK_1BIT);
if (current_status[button] == status)
continue;
else
current_status[button] = status;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Button %d (code %d) ->%d\n",
__func__, button,
f1a->button_map[button],
status);
#ifdef NO_0D_WHILE_2D
if (rmi4_data->fingers_on_2d == false) {
if (status == 1) {
before_2d_status[button] = 1;
} else {
if (while_2d_status[button] == 1) {
while_2d_status[button] = 0;
continue;
} else {
before_2d_status[button] = 0;
}
}
touch_count++;
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
} else {
if (before_2d_status[button] == 1) {
before_2d_status[button] = 0;
touch_count++;
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
} else {
if (status == 1)
while_2d_status[button] = 1;
else
while_2d_status[button] = 0;
}
}
#else
touch_count++;
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
#endif
}
if (touch_count)
input_sync(rmi4_data->input_dev);
return;
}
/**
* synaptics_rmi4_report_touch()
*
* Called by synaptics_rmi4_sensor_report().
*
* This function calls the appropriate finger data reporting function
* based on the function handler it receives and returns the number of
* fingers detected.
*/
static void synaptics_rmi4_report_touch(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
unsigned char touch_count_2d;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Function %02x reporting\n",
__func__, fhandler->fn_number);
switch (fhandler->fn_number) {
case SYNAPTICS_RMI4_F11:
touch_count_2d = synaptics_rmi4_f11_abs_report(rmi4_data,
fhandler);
if (touch_count_2d)
rmi4_data->fingers_on_2d = true;
else
rmi4_data->fingers_on_2d = false;
break;
case SYNAPTICS_RMI4_F12:
touch_count_2d = synaptics_rmi4_f12_abs_report(rmi4_data,
fhandler);
if (touch_count_2d)
rmi4_data->fingers_on_2d = true;
else
rmi4_data->fingers_on_2d = false;
break;
case SYNAPTICS_RMI4_F1A:
synaptics_rmi4_f1a_report(rmi4_data, fhandler);
break;
default:
break;
}
return;
}
/**
* synaptics_rmi4_sensor_report()
*
* Called by synaptics_rmi4_irq().
*
* This function determines the interrupt source(s) from the sensor
* and calls synaptics_rmi4_report_touch() with the appropriate
* function handler for each function with valid data inputs.
*/
static void synaptics_rmi4_sensor_report(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char data[MAX_INTR_REGISTERS + 1];
unsigned char *intr = &data[1];
struct synaptics_rmi4_f01_device_status status;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
/*
* Get interrupt status information from F01 Data1 register to
* determine the source(s) that are flagging the interrupt.
*/
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_data_base_addr,
data,
rmi4_data->num_of_intr_regs + 1);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read interrupt status\n",
__func__);
return;
}
status.data[0] = data[0];
if (status.unconfigured && !status.flash_prog) {
pr_notice("%s: spontaneous reset detected\n", __func__);
retval = synaptics_rmi4_reinit_device(rmi4_data);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to reinit device\n",
__func__);
}
return;
}
/*
* Traverse the function handler list and service the source(s)
* of the interrupt accordingly.
*/
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources) {
if (fhandler->intr_mask &
intr[fhandler->intr_reg_num]) {
synaptics_rmi4_report_touch(rmi4_data,
fhandler);
}
}
}
}
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link) {
if (!exp_fhandler->insert &&
!exp_fhandler->remove &&
(exp_fhandler->exp_fn->attn != NULL))
exp_fhandler->exp_fn->attn(rmi4_data, intr[0]);
}
}
mutex_unlock(&exp_data.mutex);
return;
}
/**
* synaptics_rmi4_irq()
*
* Called by the kernel when an interrupt occurs (when the sensor
* asserts the attention irq).
*
* This function is the ISR thread and handles the acquisition
* and the reporting of finger data when the presence of fingers
* is detected.
*/
static irqreturn_t synaptics_rmi4_irq(int irq, void *data)
{
struct synaptics_rmi4_data *rmi4_data = data;
if (IRQ_HANDLED == synaptics_filter_interrupt(data))
return IRQ_HANDLED;
if (!rmi4_data->touch_stopped)
synaptics_rmi4_sensor_report(rmi4_data);
return IRQ_HANDLED;
}
/**
* synaptics_rmi4_irq_enable()
*
* Called by synaptics_rmi4_probe() and the power management functions
* in this driver and also exported to other expansion Function modules
* such as rmi_dev.
*
* This function handles the enabling and disabling of the attention
* irq including the setting up of the ISR thread.
*/
static int synaptics_rmi4_irq_enable(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
int retval = 0;
unsigned char intr_status[MAX_INTR_REGISTERS];
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
if (enable) {
if (rmi4_data->irq_enabled)
return retval;
/* Clear interrupts first */
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_data_base_addr + 1,
intr_status,
rmi4_data->num_of_intr_regs);
if (retval < 0)
return retval;
retval = request_threaded_irq(rmi4_data->irq, NULL,
synaptics_rmi4_irq, bdata->irq_flags,
PLATFORM_DRIVER_NAME, rmi4_data);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to create irq thread\n",
__func__);
return retval;
}
rmi4_data->irq_enabled = true;
} else {
if (rmi4_data->irq_enabled) {
disable_irq(rmi4_data->irq);
free_irq(rmi4_data->irq, rmi4_data);
rmi4_data->irq_enabled = false;
}
}
return retval;
}
static void synaptics_rmi4_set_intr_mask(struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
unsigned char ii;
unsigned char intr_offset;
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) +
intr_offset);
ii++)
fhandler->intr_mask |= 1 << ii;
return;
}
static int synaptics_rmi4_f01_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
fhandler->data = NULL;
fhandler->extra = NULL;
synaptics_rmi4_set_intr_mask(fhandler, fd, intr_count);
rmi4_data->f01_query_base_addr = fd->query_base_addr;
rmi4_data->f01_ctrl_base_addr = fd->ctrl_base_addr;
rmi4_data->f01_data_base_addr = fd->data_base_addr;
rmi4_data->f01_cmd_base_addr = fd->cmd_base_addr;
return 0;
}
/**
* synaptics_rmi4_f11_init()
*
* Called by synaptics_rmi4_query_device().
*
* This funtion parses information from the Function 11 registers
* and determines the number of fingers supported, x and y data ranges,
* offset to the associated interrupt status register, interrupt bit
* mask, and gathers finger data acquisition capabilities from the query
* registers.
*/
static int synaptics_rmi4_f11_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char abs_data_size;
unsigned char abs_data_blk_size;
unsigned char query[F11_STD_QUERY_LEN];
unsigned char control[F11_STD_CTRL_LEN];
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.query_base,
query,
sizeof(query));
if (retval < 0)
return retval;
/* Maximum number of fingers supported */
if ((query[1] & MASK_3BIT) <= 4)
fhandler->num_of_data_points = (query[1] & MASK_3BIT) + 1;
else if ((query[1] & MASK_3BIT) == 5)
fhandler->num_of_data_points = 10;
rmi4_data->num_of_fingers = fhandler->num_of_data_points;
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.ctrl_base,
control,
sizeof(control));
if (retval < 0)
return retval;
/* Maximum x and y */
rmi4_data->sensor_max_x = ((control[6] & MASK_8BIT) << 0) |
((control[7] & MASK_4BIT) << 8);
rmi4_data->sensor_max_y = ((control[8] & MASK_8BIT) << 0) |
((control[9] & MASK_4BIT) << 8);
if (bdata->panel_maxx && bdata->panel_maxy &&
(rmi4_data->sensor_max_x != bdata->panel_maxx ||
rmi4_data->sensor_max_y != bdata->panel_maxy)) {
if (bdata->panel_maxx > SYNA_F11_MAX ||
bdata->panel_maxy > SYNA_F11_MAX) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Invalid panel resolution\n", __func__);
return -EINVAL;
}
rmi4_data->sensor_max_x = bdata->panel_maxx;
rmi4_data->sensor_max_y = bdata->panel_maxy;
control[6] = rmi4_data->sensor_max_x & MASK_8BIT;
control[7] = (rmi4_data->sensor_max_x >> 8) & MASK_4BIT;
control[8] = rmi4_data->sensor_max_y & MASK_8BIT;
control[9] = (rmi4_data->sensor_max_y >> 8) & MASK_4BIT;
retval = synaptics_rmi4_reg_write(rmi4_data,
fhandler->full_addr.ctrl_base,
control,
sizeof(control));
if (retval < 0)
return retval;
}
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Function %02x max x = %d max y = %d\n",
__func__, fhandler->fn_number,
rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
rmi4_data->max_touch_width = MAX_F11_TOUCH_WIDTH;
synaptics_rmi4_set_intr_mask(fhandler, fd, intr_count);
abs_data_size = query[5] & MASK_2BIT;
abs_data_blk_size = 3 + (2 * (abs_data_size == 0 ? 1 : 0));
fhandler->size_of_data_register_block = abs_data_blk_size;
fhandler->data = NULL;
fhandler->extra = NULL;
return retval;
}
static int synaptics_rmi4_f12_set_enables(struct synaptics_rmi4_data *rmi4_data,
unsigned short ctrl28)
{
int retval;
static unsigned short ctrl_28_address;
if (ctrl28)
ctrl_28_address = ctrl28;
retval = synaptics_rmi4_reg_write(rmi4_data,
ctrl_28_address,
&rmi4_data->report_enable,
sizeof(rmi4_data->report_enable));
if (retval < 0)
return retval;
return retval;
}
/**
* synaptics_rmi4_f12_init()
*
* Called by synaptics_rmi4_query_device().
*
* This funtion parses information from the Function 12 registers and
* determines the number of fingers supported, offset to the data1
* register, x and y data ranges, offset to the associated interrupt
* status register, interrupt bit mask, and allocates memory resources
* for finger data acquisition.
*/
static int synaptics_rmi4_f12_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char size_of_2d_data;
unsigned char size_of_query8;
unsigned char ctrl_8_offset;
unsigned char ctrl_23_offset;
unsigned char ctrl_28_offset;
unsigned char num_of_fingers;
struct synaptics_rmi4_f12_extra_data *extra_data;
struct synaptics_rmi4_f12_query_5 query_5;
struct synaptics_rmi4_f12_query_8 query_8;
struct synaptics_rmi4_f12_ctrl_8 ctrl_8;
struct synaptics_rmi4_f12_ctrl_23 ctrl_23;
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
size_of_2d_data = sizeof(struct synaptics_rmi4_f12_finger_data);
fhandler->extra = kmalloc(sizeof(*extra_data), GFP_KERNEL);
if (!fhandler->extra) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for function handler\n",
__func__);
return -ENOMEM;
}
extra_data = (struct synaptics_rmi4_f12_extra_data *)fhandler->extra;
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.query_base + 5,
query_5.data,
sizeof(query_5.data));
if (retval < 0)
goto free_function_handler_mem;
ctrl_8_offset = query_5.ctrl0_is_present +
query_5.ctrl1_is_present +
query_5.ctrl2_is_present +
query_5.ctrl3_is_present +
query_5.ctrl4_is_present +
query_5.ctrl5_is_present +
query_5.ctrl6_is_present +
query_5.ctrl7_is_present;
ctrl_23_offset = ctrl_8_offset +
query_5.ctrl8_is_present +
query_5.ctrl9_is_present +
query_5.ctrl10_is_present +
query_5.ctrl11_is_present +
query_5.ctrl12_is_present +
query_5.ctrl13_is_present +
query_5.ctrl14_is_present +
query_5.ctrl15_is_present +
query_5.ctrl16_is_present +
query_5.ctrl17_is_present +
query_5.ctrl18_is_present +
query_5.ctrl19_is_present +
query_5.ctrl20_is_present +
query_5.ctrl21_is_present +
query_5.ctrl22_is_present;
ctrl_28_offset = ctrl_23_offset +
query_5.ctrl23_is_present +
query_5.ctrl24_is_present +
query_5.ctrl25_is_present +
query_5.ctrl26_is_present +
query_5.ctrl27_is_present;
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.ctrl_base + ctrl_23_offset,
ctrl_23.data,
sizeof(ctrl_23.data));
if (retval < 0)
goto free_function_handler_mem;
/* Maximum number of fingers supported */
fhandler->num_of_data_points = min(ctrl_23.max_reported_objects,
(unsigned char)F12_FINGERS_TO_SUPPORT);
num_of_fingers = fhandler->num_of_data_points;
rmi4_data->num_of_fingers = num_of_fingers;
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.query_base + 7,
&size_of_query8,
sizeof(size_of_query8));
if (retval < 0)
goto free_function_handler_mem;
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.query_base + 8,
query_8.data,
size_of_query8);
if (retval < 0)
goto free_function_handler_mem;
/* Determine the presence of the Data0 register */
extra_data->data1_offset = query_8.data0_is_present;
if ((size_of_query8 >= 3) && (query_8.data15_is_present)) {
extra_data->data15_offset = query_8.data0_is_present +
query_8.data1_is_present +
query_8.data2_is_present +
query_8.data3_is_present +
query_8.data4_is_present +
query_8.data5_is_present +
query_8.data6_is_present +
query_8.data7_is_present +
query_8.data8_is_present +
query_8.data9_is_present +
query_8.data10_is_present +
query_8.data11_is_present +
query_8.data12_is_present +
query_8.data13_is_present +
query_8.data14_is_present;
extra_data->data15_size = (num_of_fingers + 7) / 8;
} else {
extra_data->data15_size = 0;
}
rmi4_data->report_enable = RPT_DEFAULT;
#ifdef REPORT_2D_Z
rmi4_data->report_enable |= RPT_Z;
#endif
#ifdef REPORT_2D_W
rmi4_data->report_enable |= (RPT_WX | RPT_WY);
#endif
retval = synaptics_rmi4_f12_set_enables(rmi4_data,
fhandler->full_addr.ctrl_base + ctrl_28_offset);
if (retval < 0)
goto free_function_handler_mem;
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.ctrl_base + ctrl_8_offset,
ctrl_8.data,
sizeof(ctrl_8.data));
if (retval < 0)
goto free_function_handler_mem;
/* Maximum x and y */
rmi4_data->sensor_max_x =
((unsigned short)ctrl_8.max_x_coord_lsb << 0) |
((unsigned short)ctrl_8.max_x_coord_msb << 8);
rmi4_data->sensor_max_y =
((unsigned short)ctrl_8.max_y_coord_lsb << 0) |
((unsigned short)ctrl_8.max_y_coord_msb << 8);
if (bdata->panel_maxx && bdata->panel_maxy &&
(rmi4_data->sensor_max_x != bdata->panel_maxx ||
rmi4_data->sensor_max_y != bdata->panel_maxy)) {
if (bdata->panel_maxx > SYNA_F12_MAX ||
bdata->panel_maxy > SYNA_F12_MAX) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Invalid panel resolution\n", __func__);
retval = -EINVAL;
goto free_function_handler_mem;
}
rmi4_data->sensor_max_x = bdata->panel_maxx;
rmi4_data->sensor_max_y = bdata->panel_maxy;
ctrl_8.max_x_coord_lsb = rmi4_data->sensor_max_x & MASK_8BIT;
ctrl_8.max_x_coord_msb = (rmi4_data->sensor_max_x >> 8) &
MASK_4BIT;
ctrl_8.max_y_coord_lsb = rmi4_data->sensor_max_y & MASK_8BIT;
ctrl_8.max_y_coord_msb = (rmi4_data->sensor_max_y >> 8) &
MASK_4BIT;
retval = synaptics_rmi4_reg_write(rmi4_data,
fhandler->full_addr.ctrl_base + ctrl_8_offset,
ctrl_8.data,
sizeof(ctrl_8.data));
if (retval < 0)
goto free_function_handler_mem;
}
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Function %02x max x = %d max y = %d\n",
__func__, fhandler->fn_number,
rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
rmi4_data->num_of_rx = ctrl_8.num_of_rx;
rmi4_data->num_of_tx = ctrl_8.num_of_tx;
rmi4_data->max_touch_width = max(rmi4_data->num_of_rx,
rmi4_data->num_of_tx);
synaptics_rmi4_set_intr_mask(fhandler, fd, intr_count);
/* Allocate memory for finger data storage space */
fhandler->data_size = num_of_fingers * size_of_2d_data;
fhandler->data = kmalloc(fhandler->data_size, GFP_KERNEL);
if (!fhandler->data) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for function handler data\n",
__func__);
retval = -ENOMEM;
goto free_function_handler_mem;
}
return retval;
free_function_handler_mem:
kfree(fhandler->extra);
return retval;
}
static int synaptics_rmi4_f1a_alloc_mem(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
struct synaptics_rmi4_f1a_handle *f1a;
f1a = kzalloc(sizeof(*f1a), GFP_KERNEL);
if (!f1a) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for function handle\n",
__func__);
return -ENOMEM;
}
fhandler->data = (void *)f1a;
fhandler->extra = NULL;
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.query_base,
f1a->button_query.data,
sizeof(f1a->button_query.data));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read query registers\n",
__func__);
return retval;
}
f1a->max_count = f1a->button_query.max_button_count + 1;
f1a->button_control.txrx_map = kzalloc(f1a->max_count * 2, GFP_KERNEL);
if (!f1a->button_control.txrx_map) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for tx rx mapping\n",
__func__);
return -ENOMEM;
}
f1a->button_bitmask_size = (f1a->max_count + 7) / 8;
f1a->button_data_buffer = kcalloc(f1a->button_bitmask_size,
sizeof(*(f1a->button_data_buffer)), GFP_KERNEL);
if (!f1a->button_data_buffer) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for data buffer\n",
__func__);
return -ENOMEM;
}
f1a->button_map = kcalloc(f1a->max_count,
sizeof(*(f1a->button_map)), GFP_KERNEL);
if (!f1a->button_map) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc mem for button map\n",
__func__);
return -ENOMEM;
}
return 0;
}
static int synaptics_rmi4_f1a_button_map(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char ii;
unsigned char mapping_offset = 0;
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
mapping_offset = f1a->button_query.has_general_control +
f1a->button_query.has_interrupt_enable +
f1a->button_query.has_multibutton_select;
if (f1a->button_query.has_tx_rx_map) {
retval = synaptics_rmi4_reg_read(rmi4_data,
fhandler->full_addr.ctrl_base + mapping_offset,
f1a->button_control.txrx_map,
sizeof(f1a->button_control.txrx_map));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read tx rx mapping\n",
__func__);
return retval;
}
rmi4_data->button_txrx_mapping = f1a->button_control.txrx_map;
}
if (!bdata->cap_button_map) {
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: cap_button_map is NULL in board file\n",
__func__);
} else if (!bdata->cap_button_map->map) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Button map is missing in board file\n",
__func__);
} else {
if (bdata->cap_button_map->nbuttons != f1a->max_count) {
f1a->valid_button_count = min(f1a->max_count,
bdata->cap_button_map->nbuttons);
} else {
f1a->valid_button_count = f1a->max_count;
}
for (ii = 0; ii < f1a->valid_button_count; ii++)
f1a->button_map[ii] = bdata->cap_button_map->map[ii];
}
return 0;
}
static void synaptics_rmi4_f1a_kfree(struct synaptics_rmi4_fn *fhandler)
{
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
if (f1a) {
kfree(f1a->button_control.txrx_map);
kfree(f1a->button_data_buffer);
kfree(f1a->button_map);
kfree(f1a);
fhandler->data = NULL;
}
return;
}
static int synaptics_rmi4_f1a_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
synaptics_rmi4_set_intr_mask(fhandler, fd, intr_count);
retval = synaptics_rmi4_f1a_alloc_mem(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
retval = synaptics_rmi4_f1a_button_map(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
rmi4_data->button_0d_enabled = 1;
return 0;
error_exit:
synaptics_rmi4_f1a_kfree(fhandler);
return retval;
}
static void synaptics_rmi4_empty_fn_list(struct synaptics_rmi4_data *rmi4_data)
{
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_fn *fhandler_temp;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry_safe(fhandler,
fhandler_temp,
&rmi->support_fn_list,
link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) {
synaptics_rmi4_f1a_kfree(fhandler);
} else {
kfree(fhandler->extra);
kfree(fhandler->data);
}
list_del(&fhandler->link);
kfree(fhandler);
}
}
INIT_LIST_HEAD(&rmi->support_fn_list);
return;
}
static int synaptics_rmi4_check_status(struct synaptics_rmi4_data *rmi4_data,
bool *was_in_bl_mode)
{
int retval;
int timeout = CHECK_STATUS_TIMEOUT_MS;
unsigned char command = 0x01;
unsigned char intr_status;
struct synaptics_rmi4_f01_device_status status;
/* Do a device reset first */
retval = synaptics_rmi4_reg_write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0)
return retval;
msleep(rmi4_data->hw_if->board_data->reset_delay_ms);
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status.data,
sizeof(status.data));
if (retval < 0)
return retval;
while (status.status_code == STATUS_CRC_IN_PROGRESS) {
if (timeout > 0)
msleep(20);
else
return -1;
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status.data,
sizeof(status.data));
if (retval < 0)
return retval;
timeout -= 20;
}
if (timeout != CHECK_STATUS_TIMEOUT_MS)
*was_in_bl_mode = true;
if (status.flash_prog == 1) {
rmi4_data->flash_prog_mode = true;
pr_notice("%s: In flash prog mode, status = 0x%02x\n",
__func__,
status.status_code);
} else {
rmi4_data->flash_prog_mode = false;
}
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_data_base_addr + 1,
&intr_status,
sizeof(intr_status));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read interrupt status\n",
__func__);
return retval;
}
return 0;
}
static void synaptics_rmi4_set_configured(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char device_ctrl;
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to set configured\n",
__func__);
return;
}
rmi4_data->no_sleep_setting = device_ctrl & NO_SLEEP_ON;
device_ctrl |= CONFIGURED;
retval = synaptics_rmi4_reg_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to set configured\n",
__func__);
}
return;
}
static int synaptics_rmi4_alloc_fh(struct synaptics_rmi4_fn **fhandler,
struct synaptics_rmi4_fn_desc *rmi_fd, int page_number)
{
*fhandler = kmalloc(sizeof(**fhandler), GFP_KERNEL);
if (!(*fhandler))
return -ENOMEM;
(*fhandler)->full_addr.data_base =
(rmi_fd->data_base_addr |
(page_number << 8));
(*fhandler)->full_addr.ctrl_base =
(rmi_fd->ctrl_base_addr |
(page_number << 8));
(*fhandler)->full_addr.cmd_base =
(rmi_fd->cmd_base_addr |
(page_number << 8));
(*fhandler)->full_addr.query_base =
(rmi_fd->query_base_addr |
(page_number << 8));
return 0;
}
/**
* synaptics_rmi4_query_device()
*
* Called by synaptics_rmi4_probe().
*
* This funtion scans the page description table, records the offsets
* to the register types of Function $01, sets up the function handlers
* for Function $11 and Function $12, determines the number of interrupt
* sources from the sensor, adds valid Functions with data inputs to the
* Function linked list, parses information from the query registers of
* Function $01, and enables the interrupt sources from the valid Functions
* with data inputs.
*/
static int synaptics_rmi4_query_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char ii;
unsigned char page_number;
unsigned char intr_count;
unsigned char f01_query[F01_STD_QUERY_LEN];
unsigned short pdt_entry_addr;
unsigned short intr_addr;
bool f01found;
bool was_in_bl_mode;
struct synaptics_rmi4_fn_desc rmi_fd;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
unsigned char pkg_id[PACKAGE_ID_SIZE];
rmi = &(rmi4_data->rmi4_mod_info);
rescan_pdt:
f01found = false;
was_in_bl_mode = false;
intr_count = 0;
INIT_LIST_HEAD(&rmi->support_fn_list);
/* Scan the page description tables of the pages to service */
for (page_number = 0; page_number < PAGES_TO_SERVICE; page_number++) {
for (pdt_entry_addr = PDT_START; pdt_entry_addr > PDT_END;
pdt_entry_addr -= PDT_ENTRY_SIZE) {
pdt_entry_addr |= (page_number << 8);
retval = synaptics_rmi4_reg_read(rmi4_data,
pdt_entry_addr,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0)
return retval;
pdt_entry_addr &= ~(MASK_8BIT << 8);
fhandler = NULL;
if (rmi_fd.fn_number == 0) {
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Reached end of PDT\n",
__func__);
break;
}
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: F%02x found (page %d)\n",
__func__, rmi_fd.fn_number,
page_number);
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F01:
if (rmi_fd.intr_src_count == 0)
break;
f01found = true;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f01_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
retval = synaptics_rmi4_check_status(rmi4_data,
&was_in_bl_mode);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to check status\n",
__func__);
return retval;
}
if (was_in_bl_mode) {
kfree(fhandler);
fhandler = NULL;
goto rescan_pdt;
}
if (rmi4_data->flash_prog_mode)
goto flash_prog_mode;
break;
case SYNAPTICS_RMI4_F11:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f11_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
break;
case SYNAPTICS_RMI4_F12:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f12_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
break;
case SYNAPTICS_RMI4_F1A:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f1a_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0) {
#ifdef IGNORE_FN_INIT_FAILURE
kfree(fhandler);
fhandler = NULL;
#else
return retval;
#endif
}
break;
}
/* Accumulate the interrupt count */
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
if (fhandler && rmi_fd.intr_src_count) {
list_add_tail(&fhandler->link,
&rmi->support_fn_list);
}
}
}
if (!f01found) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to find F01\n",
__func__);
return -EINVAL;
}
flash_prog_mode:
rmi4_data->num_of_intr_regs = (intr_count + 7) / 8;
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Number of interrupt registers = %d\n",
__func__, rmi4_data->num_of_intr_regs);
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_query_base_addr,
f01_query,
sizeof(f01_query));
if (retval < 0)
return retval;
/* RMI Version 4.0 currently supported */
rmi->version_major = 4;
rmi->version_minor = 0;
rmi->manufacturer_id = f01_query[0];
rmi->product_props = f01_query[1];
rmi->product_info[0] = f01_query[2] & MASK_7BIT;
rmi->product_info[1] = f01_query[3] & MASK_7BIT;
rmi->date_code[0] = f01_query[4] & MASK_5BIT;
rmi->date_code[1] = f01_query[5] & MASK_4BIT;
rmi->date_code[2] = f01_query[6] & MASK_5BIT;
rmi->tester_id = ((f01_query[7] & MASK_7BIT) << 8) |
(f01_query[8] & MASK_7BIT);
rmi->serial_number = ((f01_query[9] & MASK_7BIT) << 8) |
(f01_query[10] & MASK_7BIT);
memcpy(rmi->product_id_string, &f01_query[11], 10);
if (rmi->manufacturer_id != 1) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Non-Synaptics device found, manufacturer ID = %d\n",
__func__, rmi->manufacturer_id);
}
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_query_base_addr + F01_PACKAGE_ID_OFFSET,
pkg_id, sizeof(pkg_id));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to read device package id (code %d)\n",
__func__, retval);
return retval;
}
rmi->package_id = (pkg_id[1] << 8) | pkg_id[0];
rmi->package_id_rev = (pkg_id[3] << 8) | pkg_id[2];
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_query_base_addr + F01_BUID_ID_OFFSET,
rmi->build_id,
sizeof(rmi->build_id));
if (retval < 0)
return retval;
rmi4_data->firmware_id = (unsigned int)rmi->build_id[0] +
(unsigned int)rmi->build_id[1] * 0x100 +
(unsigned int)rmi->build_id[2] * 0x10000;
memset(rmi4_data->intr_mask, 0x00, sizeof(rmi4_data->intr_mask));
/*
* Map out the interrupt bit masks for the interrupt sources
* from the registered function handlers.
*/
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources) {
rmi4_data->intr_mask[fhandler->intr_reg_num] |=
fhandler->intr_mask;
}
}
}
/* Enable the interrupt sources */
for (ii = 0; ii < rmi4_data->num_of_intr_regs; ii++) {
if (rmi4_data->intr_mask[ii] != 0x00) {
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Interrupt enable mask %d = 0x%02x\n",
__func__, ii, rmi4_data->intr_mask[ii]);
intr_addr = rmi4_data->f01_ctrl_base_addr + 1 + ii;
retval = synaptics_rmi4_reg_write(rmi4_data,
intr_addr,
&(rmi4_data->intr_mask[ii]),
sizeof(rmi4_data->intr_mask[ii]));
if (retval < 0)
return retval;
}
}
synaptics_rmi4_set_configured(rmi4_data);
return 0;
}
static void synaptics_rmi4_set_params(struct synaptics_rmi4_data *rmi4_data)
{
unsigned char ii;
struct synaptics_rmi4_f1a_handle *f1a;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
rmi = &(rmi4_data->rmi4_mod_info);
if (bdata->disp_maxx && bdata->disp_maxy) {
input_set_abs_params(rmi4_data->input_dev, ABS_MT_POSITION_X,
0, bdata->disp_maxx, 0, 0);
input_set_abs_params(rmi4_data->input_dev, ABS_MT_POSITION_Y,
0, bdata->disp_maxy, 0, 0);
} else {
input_set_abs_params(rmi4_data->input_dev, ABS_MT_POSITION_X,
0, rmi4_data->sensor_max_x, 0, 0);
input_set_abs_params(rmi4_data->input_dev, ABS_MT_POSITION_Y,
0, rmi4_data->sensor_max_y, 0, 0);
}
#ifdef REPORT_2D_W
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, 0,
rmi4_data->max_touch_width, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, 0,
rmi4_data->max_touch_width, 0, 0);
#endif
#ifdef TYPE_B_PROTOCOL
input_mt_init_slots(rmi4_data->input_dev,
rmi4_data->num_of_fingers, 0);
#endif
f1a = NULL;
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A)
f1a = fhandler->data;
}
}
if (f1a) {
for (ii = 0; ii < f1a->valid_button_count; ii++) {
set_bit(f1a->button_map[ii],
rmi4_data->input_dev->keybit);
input_set_capability(rmi4_data->input_dev,
EV_KEY, f1a->button_map[ii]);
}
}
return;
}
static int synaptics_dsx_virtual_keys_init(struct device *dev,
struct synaptics_dsx_board_data *rmi4_pdata)
{
int width, height, center_x, center_y;
int x1 = 0, x2 = 0, i, c = 0, rc = 0, border;
vkey_buf = devm_kzalloc(dev, MAX_BUF_SIZE, GFP_KERNEL);
if (!vkey_buf) {
dev_err(dev, "Failed to allocate memory\n");
return -ENOMEM;
}
border = (rmi4_pdata->panel_maxx - rmi4_pdata->disp_maxx) * 2;
width = ((rmi4_pdata->disp_maxx -
(border * (rmi4_pdata->virtual_key_map->nkeys - 1)))
/ rmi4_pdata->virtual_key_map->nkeys);
height = (rmi4_pdata->panel_maxy - rmi4_pdata->disp_maxy);
center_y = rmi4_pdata->disp_maxy + (height / 2);
height = height * HEIGHT_SCALE_NUM / HEIGHT_SCALE_DENOM;
x2 -= border * BORDER_ADJUST_NUM / BORDER_ADJUST_DENOM;
for (i = 0; i < rmi4_pdata->virtual_key_map->nkeys; i++) {
x1 = x2 + border;
x2 = x2 + border + width;
center_x = x1 + (x2 - x1) / 2;
c += snprintf(vkey_buf + c, MAX_BUF_SIZE - c,
"%s:%d:%d:%d:%d:%d\n", VKEY_VER_CODE,
rmi4_pdata->virtual_key_map->map[i],
center_x, center_y, width, height);
}
vkey_buf[c] = '\0';
vkey_kobj = kobject_create_and_add("board_properties", NULL);
if (!vkey_kobj) {
dev_err(dev, "unable to create kobject\n");
return -ENOMEM;
}
rc = sysfs_create_group(vkey_kobj, &vkey_grp);
if (rc) {
dev_err(dev, "failed to create attributes\n");
kobject_put(vkey_kobj);
}
return rc;
}
static int synaptics_dsx_get_virtual_keys(struct device *dev,
struct property *prop, char *name,
struct synaptics_dsx_board_data *rmi4_pdata,
struct device_node *np)
{
u32 num_keys;
int rc;
num_keys = prop->length / sizeof(u32);
rmi4_pdata->virtual_key_map = devm_kzalloc(dev,
sizeof(*rmi4_pdata->virtual_key_map),
GFP_KERNEL);
if (!rmi4_pdata->virtual_key_map)
return -ENOMEM;
rmi4_pdata->virtual_key_map->map = devm_kzalloc(dev,
sizeof(*rmi4_pdata->virtual_key_map->map) *
num_keys, GFP_KERNEL);
if (!rmi4_pdata->virtual_key_map->map)
return -ENOMEM;
rc = of_property_read_u32_array(np, name,
rmi4_pdata->virtual_key_map->map,
num_keys);
if (rc) {
dev_err(dev, "Failed to read key codes\n");
return -EINVAL;
}
rmi4_pdata->virtual_key_map->nkeys = num_keys;
return 0;
}
static int synaptics_dsx_get_button_map(struct device *dev,
struct property *prop, char *name,
struct synaptics_dsx_board_data *rmi4_pdata,
struct device_node *np)
{
int rc, i;
u32 num_buttons;
u32 button_map[MAX_NUMBER_OF_BUTTONS];
num_buttons = prop->length / sizeof(u32);
rmi4_pdata->cap_button_map = devm_kzalloc(dev,
sizeof(*rmi4_pdata->cap_button_map),
GFP_KERNEL);
if (!rmi4_pdata->cap_button_map)
return -ENOMEM;
rmi4_pdata->cap_button_map->map = devm_kzalloc(dev,
sizeof(*rmi4_pdata->cap_button_map->map) *
num_buttons, GFP_KERNEL);
if (!rmi4_pdata->cap_button_map->map)
return -ENOMEM;
if (num_buttons <= MAX_NUMBER_OF_BUTTONS) {
rc = of_property_read_u32_array(np,
name, button_map, num_buttons);
if (rc) {
dev_err(dev, "Unable to read key codes\n");
return rc;
}
for (i = 0; i < num_buttons; i++)
rmi4_pdata->cap_button_map->map[i] =
button_map[i];
rmi4_pdata->cap_button_map->nbuttons = num_buttons;
} else {
return -EINVAL;
}
return 0;
}
static int synaptics_rmi4_parse_dt_children(struct device *dev,
struct synaptics_dsx_board_data *rmi4_pdata,
struct synaptics_rmi4_data *rmi4_data)
{
struct synaptics_rmi4_device_info *rmi = &rmi4_data->rmi4_mod_info;
struct device_node *node = dev->of_node, *child = NULL;
int rc = 0;
struct synaptics_rmi4_fn *fhandler = NULL;
struct property *prop;
for_each_child_of_node(node, child) {
rc = of_property_read_u32(child, "synaptics,package-id",
&rmi4_pdata->package_id);
if (rc && (rc != -EINVAL)) {
dev_err(dev, "Unable to read package_id\n");
return rc;
} else if (rc == -EINVAL) {
rmi4_pdata->package_id = 0x00;
}
if (rmi4_pdata->package_id) {
if (rmi4_pdata->package_id != rmi->package_id) {
dev_err(dev,
"%s: Synaptics package id don't match %d %d\n",
__func__,
rmi4_pdata->package_id, rmi->package_id);
/*
* Iterate over next child if package
* id does not match
*/
continue;
} else if (of_property_read_bool(child,
"synaptics,bypass-sensor-coords-check")) {
/*
* Some unprogrammed panels from touch vendor
* and wrongly programmed panels from factory
* may return incorrect sensor coordinate range
* when their query registers are read, but
* they normally work fine in field. In such
* a scenario, driver can bypass the comparison
* of coordinate range read from sensor and read
* from DT and continue normal operation.
*/
dev_info(dev,
"%s Synaptics package id matches %d %d,"
"but bypassing the comparison of sensor"
"coordinates.\n", __func__,
rmi4_pdata->package_id,
rmi->package_id);
dev_info(dev, "Pmax_x Pmax_y = %d:%d\n",
rmi4_pdata->panel_maxx,
rmi4_pdata->panel_maxy);
dev_info(dev, "Smax_x Smax_y = %d:%d\n",
rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
} else {
/*
* If package id read from DT matches the
* package id value read from touch controller,
* also check if sensor dimensions read from DT
* match those read from controller, before
* moving further. For this first check if touch
* panel coordinates are defined in DT or not.
*/
if (of_find_property(child,
"synaptics,panel-coords", NULL)) {
synaptics_dsx_get_dt_coords(dev,
"synaptics,panel-coords",
rmi4_pdata, child);
dev_info(dev, "Pmax_x Pmax_y = %d:%d\n",
rmi4_pdata->panel_maxx,
rmi4_pdata->panel_maxy);
dev_info(dev, "Smax_x Smax_y = %d:%d\n",
rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
if ((rmi4_pdata->panel_maxx !=
rmi4_data->sensor_max_x) ||
(rmi4_pdata->panel_maxy !=
rmi4_data->sensor_max_y))
continue;
}
}
}
rc = synaptics_dsx_get_dt_coords(dev,
"synaptics,display-coords", rmi4_pdata, child);
if (rc && (rc != -EINVAL))
return rc;
prop = of_find_property(child, "synaptics,button-map", NULL);
if (prop) {
rc = synaptics_dsx_get_button_map(dev, prop,
"synaptics,button-map", rmi4_pdata, child);
if (rc < 0) {
dev_err(dev, "Unable to read button map\n");
return rc;
}
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler,
&rmi->support_fn_list, link) {
if (fhandler->fn_number ==
SYNAPTICS_RMI4_F1A)
break;
}
}
if (fhandler && fhandler->fn_number ==
SYNAPTICS_RMI4_F1A) {
rc = synaptics_rmi4_f1a_button_map(rmi4_data,
fhandler);
if (rc < 0) {
dev_err(dev,
"Fail to register F1A %d\n",
rc);
return rc;
}
}
}
prop = of_find_property(child, "synaptics,key-codes", NULL);
if (prop) {
rc = synaptics_dsx_get_virtual_keys(dev, prop,
"synaptics,key-codes", rmi4_pdata, child);
if (!rc) {
rc = synaptics_dsx_virtual_keys_init(dev,
rmi4_pdata);
if (!rc)
rmi4_data->support_vkeys = true;
} else {
dev_err(dev,
"Unable to read virtual key codes\n");
return rc;
}
}
break;
}
return 0;
}
static int synaptics_rmi4_set_input_dev(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
int temp;
rmi4_data->input_dev = input_allocate_device();
if (rmi4_data->input_dev == NULL) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to allocate input device\n",
__func__);
retval = -ENOMEM;
goto err_input_device;
}
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to query device\n",
__func__);
goto err_query_device;
}
if (rmi4_data->hw_if->board_data->detect_device) {
retval = synaptics_rmi4_parse_dt_children(
rmi4_data->pdev->dev.parent,
rmi4_data->hw_if->board_data,
rmi4_data);
if (retval < 0)
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to parse device tree property\n",
__func__);
}
rmi4_data->input_dev->name = PLATFORM_DRIVER_NAME;
rmi4_data->input_dev->phys = INPUT_PHYS_NAME;
rmi4_data->input_dev->id.product = SYNAPTICS_DSX_DRIVER_PRODUCT;
rmi4_data->input_dev->id.version = SYNAPTICS_DSX_DRIVER_VERSION;
rmi4_data->input_dev->dev.parent = rmi4_data->pdev->dev.parent;
input_set_drvdata(rmi4_data->input_dev, rmi4_data);
set_bit(EV_SYN, rmi4_data->input_dev->evbit);
set_bit(EV_KEY, rmi4_data->input_dev->evbit);
set_bit(EV_ABS, rmi4_data->input_dev->evbit);
set_bit(BTN_TOUCH, rmi4_data->input_dev->keybit);
set_bit(BTN_TOOL_FINGER, rmi4_data->input_dev->keybit);
#ifdef INPUT_PROP_DIRECT
set_bit(INPUT_PROP_DIRECT, rmi4_data->input_dev->propbit);
#endif
if (rmi4_data->hw_if->board_data->swap_axes) {
temp = rmi4_data->sensor_max_x;
rmi4_data->sensor_max_x = rmi4_data->sensor_max_y;
rmi4_data->sensor_max_y = temp;
}
synaptics_rmi4_set_params(rmi4_data);
retval = input_register_device(rmi4_data->input_dev);
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to register input device\n",
__func__);
goto err_register_input;
}
return 0;
err_register_input:
if (rmi4_data->support_vkeys) {
sysfs_remove_group(vkey_kobj, &vkey_grp);
kobject_put(vkey_kobj);
}
err_query_device:
synaptics_rmi4_empty_fn_list(rmi4_data);
input_free_device(rmi4_data->input_dev);
err_input_device:
return retval;
}
static int synaptics_rmi4_set_gpio(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
int power_on;
int reset_on;
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
power_on = bdata->power_on_state;
reset_on = bdata->reset_on_state;
retval = bdata->gpio_config(
bdata->irq_gpio,
true, 0, 0);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to configure attention GPIO\n",
__func__);
goto err_gpio_irq;
}
if (bdata->power_gpio >= 0) {
retval = bdata->gpio_config(
bdata->power_gpio,
true, 1, !power_on);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to configure power GPIO\n",
__func__);
goto err_gpio_power;
}
}
if (bdata->reset_gpio >= 0) {
retval = bdata->gpio_config(
bdata->reset_gpio,
true, 1, !reset_on);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to configure reset GPIO\n",
__func__);
goto err_gpio_reset;
}
}
if (bdata->power_gpio >= 0) {
gpio_set_value(bdata->power_gpio, power_on);
msleep(bdata->power_delay_ms);
}
if (bdata->reset_gpio >= 0) {
gpio_set_value(bdata->reset_gpio, reset_on);
msleep(bdata->reset_active_ms);
gpio_set_value(bdata->reset_gpio, !reset_on);
msleep(bdata->reset_delay_ms);
}
return 0;
err_gpio_reset:
if (bdata->power_gpio >= 0) {
bdata->gpio_config(
bdata->power_gpio,
false, 0, 0);
}
err_gpio_power:
bdata->gpio_config(
bdata->irq_gpio,
false, 0, 0);
err_gpio_irq:
return retval;
}
static int synaptics_dsx_pinctrl_init(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
/* Get pinctrl if target uses pinctrl */
rmi4_data->ts_pinctrl = devm_pinctrl_get((rmi4_data->pdev->dev.parent));
if (IS_ERR_OR_NULL(rmi4_data->ts_pinctrl)) {
retval = PTR_ERR(rmi4_data->ts_pinctrl);
dev_dbg(rmi4_data->pdev->dev.parent,
"Target does not use pinctrl %d\n", retval);
goto err_pinctrl_get;
}
rmi4_data->pinctrl_state_active
= pinctrl_lookup_state(rmi4_data->ts_pinctrl, "pmx_ts_active");
if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_active)) {
retval = PTR_ERR(rmi4_data->pinctrl_state_active);
dev_err(rmi4_data->pdev->dev.parent,
"Can not lookup %s pinstate %d\n",
PINCTRL_STATE_ACTIVE, retval);
goto err_pinctrl_lookup;
}
rmi4_data->pinctrl_state_suspend
= pinctrl_lookup_state(rmi4_data->ts_pinctrl, "pmx_ts_suspend");
if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_suspend)) {
retval = PTR_ERR(rmi4_data->pinctrl_state_suspend);
dev_dbg(rmi4_data->pdev->dev.parent,
"Can not lookup %s pinstate %d\n",
PINCTRL_STATE_SUSPEND, retval);
goto err_pinctrl_lookup;
}
rmi4_data->pinctrl_state_release
= pinctrl_lookup_state(rmi4_data->ts_pinctrl, "pmx_ts_release");
if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_release)) {
retval = PTR_ERR(rmi4_data->pinctrl_state_release);
dev_dbg(rmi4_data->pdev->dev.parent,
"Can not lookup %s pinstate %d\n",
PINCTRL_STATE_RELEASE, retval);
}
return 0;
err_pinctrl_lookup:
devm_pinctrl_put(rmi4_data->ts_pinctrl);
err_pinctrl_get:
rmi4_data->ts_pinctrl = NULL;
return retval;
}
static int synaptics_dsx_gpio_configure(struct synaptics_rmi4_data *rmi4_data,
bool on)
{
int retval = 0;
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
if (on) {
if (gpio_is_valid(bdata->irq_gpio)) {
/* configure touchscreen irq gpio */
retval = gpio_request(bdata->irq_gpio,
"rmi4_irq_gpio");
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"unable to request gpio [%d]\n",
bdata->irq_gpio);
goto err_irq_gpio_req;
}
retval = gpio_direction_input(bdata->irq_gpio);
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"unable to set dir for gpio[%d]\n",
bdata->irq_gpio);
goto err_irq_gpio_dir;
}
} else {
dev_err(rmi4_data->pdev->dev.parent,
"irq gpio not provided\n");
goto err_irq_gpio_req;
}
if (gpio_is_valid(bdata->reset_gpio)) {
/* configure touchscreen reset out gpio */
retval = gpio_request(bdata->reset_gpio,
"rmi4_reset_gpio");
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"unable to request gpio [%d]\n",
bdata->reset_gpio);
goto err_irq_gpio_dir;
}
retval = gpio_direction_output(bdata->reset_gpio, 1);
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"unable to set dir for gpio [%d]\n",
bdata->reset_gpio);
goto err_reset_gpio_dir;
}
gpio_set_value(bdata->reset_gpio, 1);
msleep(bdata->reset_delay_ms);
}
return 0;
} else {
if (bdata->disable_gpios) {
if (gpio_is_valid(bdata->irq_gpio))
gpio_free(bdata->irq_gpio);
if (gpio_is_valid(bdata->reset_gpio)) {
/*
* This is intended to save leakage current
* only. Even if the call(gpio_direction_input)
* fails, only leakage current will be more but
* functionality will not be affected.
*/
retval = gpio_direction_input(
bdata->reset_gpio);
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"unable to set direction for gpio "
"[%d]\n", bdata->irq_gpio);
}
gpio_free(bdata->reset_gpio);
}
}
return 0;
}
err_reset_gpio_dir:
if (gpio_is_valid(bdata->reset_gpio))
gpio_free(bdata->reset_gpio);
err_irq_gpio_dir:
if (gpio_is_valid(bdata->irq_gpio))
gpio_free(bdata->irq_gpio);
err_irq_gpio_req:
return retval;
}
static int synaptics_rmi4_free_fingers(struct synaptics_rmi4_data *rmi4_data)
{
unsigned char ii;
#ifdef TYPE_B_PROTOCOL
for (ii = 0; ii < rmi4_data->num_of_fingers; ii++) {
input_mt_slot(rmi4_data->input_dev, ii);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, 0);
}
#endif
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 0);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 0);
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
input_sync(rmi4_data->input_dev);
rmi4_data->fingers_on_2d = false;
return 0;
}
static int synaptics_rmi4_reinit_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char ii;
unsigned short intr_addr;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
mutex_lock(&(rmi4_data->rmi4_reset_mutex));
synaptics_rmi4_free_fingers(rmi4_data);
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F12) {
synaptics_rmi4_f12_set_enables(rmi4_data, 0);
break;
}
}
}
for (ii = 0; ii < rmi4_data->num_of_intr_regs; ii++) {
if (rmi4_data->intr_mask[ii] != 0x00) {
dev_dbg(rmi4_data->pdev->dev.parent,
"%s: Interrupt enable mask %d = 0x%02x\n",
__func__, ii, rmi4_data->intr_mask[ii]);
intr_addr = rmi4_data->f01_ctrl_base_addr + 1 + ii;
retval = synaptics_rmi4_reg_write(rmi4_data,
intr_addr,
&(rmi4_data->intr_mask[ii]),
sizeof(rmi4_data->intr_mask[ii]));
if (retval < 0)
goto exit;
}
}
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->reinit != NULL)
exp_fhandler->exp_fn->reinit(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
synaptics_rmi4_set_configured(rmi4_data);
retval = 0;
exit:
mutex_unlock(&(rmi4_data->rmi4_reset_mutex));
return retval;
}
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
int temp;
unsigned char command = 0x01;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
mutex_lock(&(rmi4_data->rmi4_reset_mutex));
rmi4_data->touch_stopped = true;
retval = synaptics_rmi4_reg_write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
mutex_unlock(&(rmi4_data->rmi4_reset_mutex));
return retval;
}
msleep(rmi4_data->hw_if->board_data->reset_delay_ms);
synaptics_rmi4_free_fingers(rmi4_data);
synaptics_rmi4_empty_fn_list(rmi4_data);
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to query device\n",
__func__);
mutex_unlock(&(rmi4_data->rmi4_reset_mutex));
return retval;
}
if (rmi4_data->hw_if->board_data->swap_axes) {
temp = rmi4_data->sensor_max_x;
rmi4_data->sensor_max_x = rmi4_data->sensor_max_y;
rmi4_data->sensor_max_y = temp;
}
synaptics_rmi4_set_params(rmi4_data);
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->reset != NULL)
exp_fhandler->exp_fn->reset(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
rmi4_data->touch_stopped = false;
mutex_unlock(&(rmi4_data->rmi4_reset_mutex));
return 0;
}
/**
* synaptics_rmi4_exp_fn_work()
*
* Called by the kernel at the scheduled time.
*
* This function is a work thread that checks for the insertion and
* removal of other expansion Function modules such as rmi_dev and calls
* their initialization and removal callback functions accordingly.
*/
static void synaptics_rmi4_exp_fn_work(struct work_struct *work)
{
int retval;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_exp_fhandler *exp_fhandler_temp;
struct synaptics_rmi4_data *rmi4_data = exp_data.rmi4_data;
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry_safe(exp_fhandler,
exp_fhandler_temp,
&exp_data.list,
link) {
if ((exp_fhandler->exp_fn->init != NULL) &&
exp_fhandler->insert) {
retval = exp_fhandler->exp_fn->init(rmi4_data);
if (retval < 0) {
list_del(&exp_fhandler->link);
kfree(exp_fhandler);
} else {
exp_fhandler->insert = false;
}
} else if ((exp_fhandler->exp_fn->remove != NULL) &&
exp_fhandler->remove) {
exp_fhandler->exp_fn->remove(rmi4_data);
list_del(&exp_fhandler->link);
kfree(exp_fhandler);
}
}
}
mutex_unlock(&exp_data.mutex);
return;
}
/**
* synaptics_rmi4_dsx_new_function()
*
* Called by other expansion Function modules in their module init and
* module exit functions.
*
* This function is used by other expansion Function modules such as
* rmi_dev to register themselves with the driver by providing their
* initialization and removal callback function pointers so that they
* can be inserted or removed dynamically at module init and exit times,
* respectively.
*/
void synaptics_rmi4_dsx_new_function(struct synaptics_rmi4_exp_fn *exp_fn,
bool insert)
{
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
if (!exp_data.initialized) {
mutex_init(&exp_data.mutex);
INIT_LIST_HEAD(&exp_data.list);
exp_data.initialized = true;
}
mutex_lock(&exp_data.mutex);
if (insert) {
exp_fhandler = kzalloc(sizeof(*exp_fhandler), GFP_KERNEL);
if (!exp_fhandler) {
pr_err("%s: Failed to alloc mem for expansion function\n",
__func__);
goto exit;
}
exp_fhandler->exp_fn = exp_fn;
exp_fhandler->insert = true;
exp_fhandler->remove = false;
list_add_tail(&exp_fhandler->link, &exp_data.list);
} else if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link) {
if (exp_fhandler->exp_fn->fn_type == exp_fn->fn_type) {
exp_fhandler->insert = false;
exp_fhandler->remove = true;
goto exit;
}
}
}
exit:
mutex_unlock(&exp_data.mutex);
if (exp_data.queue_work) {
queue_delayed_work(exp_data.workqueue,
&exp_data.work,
msecs_to_jiffies(EXP_FN_WORK_DELAY_MS));
}
return;
}
EXPORT_SYMBOL(synaptics_rmi4_dsx_new_function);
static int synaptics_dsx_regulator_configure(struct synaptics_rmi4_data
*rmi4_data)
{
int retval;
rmi4_data->regulator_vdd = regulator_get(rmi4_data->pdev->dev.parent,
"vdd");
if (IS_ERR(rmi4_data->regulator_vdd)) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to get regulator vdd\n",
__func__);
retval = PTR_ERR(rmi4_data->regulator_vdd);
return retval;
}
rmi4_data->regulator_avdd = regulator_get(rmi4_data->pdev->dev.parent,
"avdd");
if (IS_ERR(rmi4_data->regulator_avdd)) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to get regulator avdd\n",
__func__);
retval = PTR_ERR(rmi4_data->regulator_avdd);
regulator_put(rmi4_data->regulator_vdd);
return retval;
}
return 0;
};
static int synaptics_dsx_regulator_enable(struct synaptics_rmi4_data
*rmi4_data, bool on)
{
int retval;
if (on) {
retval = regulator_enable(rmi4_data->regulator_vdd);
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to enable regulator vdd\n",
__func__);
return retval;
}
retval = regulator_enable(rmi4_data->regulator_avdd);
if (retval) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to enable regulator avdd\n",
__func__);
regulator_disable(rmi4_data->regulator_vdd);
return retval;
}
msleep(rmi4_data->hw_if->board_data->power_delay_ms);
} else {
regulator_disable(rmi4_data->regulator_vdd);
regulator_disable(rmi4_data->regulator_avdd);
}
return 0;
}
/**
* synaptics_rmi4_probe()
*
* Called by the kernel when an association with an I2C device of the
* same name is made (after doing i2c_add_driver).
*
* This funtion allocates and initializes the resources for the driver
* as an input driver, turns on the power to the sensor, queries the
* sensor for its supported Functions and characteristics, registers
* the driver to the input subsystem, sets up the interrupt, handles
* the registration of the early_suspend and late_resume functions,
* and creates a work queue for detection of other expansion Function
* modules.
*/
static int synaptics_rmi4_probe(struct platform_device *pdev)
{
int retval, len;
unsigned char attr_count;
struct synaptics_rmi4_data *rmi4_data;
const struct synaptics_dsx_hw_interface *hw_if;
const struct synaptics_dsx_board_data *bdata;
struct dentry *temp;
hw_if = pdev->dev.platform_data;
if (!hw_if) {
dev_err(&pdev->dev,
"%s: No hardware interface found\n",
__func__);
return -EINVAL;
}
bdata = hw_if->board_data;
if (!bdata) {
dev_err(&pdev->dev,
"%s: No board data found\n",
__func__);
return -EINVAL;
}
rmi4_data = kzalloc(sizeof(*rmi4_data), GFP_KERNEL);
if (!rmi4_data) {
dev_err(&pdev->dev,
"%s: Failed to alloc mem for rmi4_data\n",
__func__);
return -ENOMEM;
}
rmi4_data->pdev = pdev;
rmi4_data->current_page = MASK_8BIT;
rmi4_data->hw_if = hw_if;
rmi4_data->touch_stopped = false;
rmi4_data->sensor_sleep = false;
rmi4_data->irq_enabled = false;
rmi4_data->fw_updating = false;
rmi4_data->fingers_on_2d = false;
rmi4_data->irq_enable = synaptics_rmi4_irq_enable;
rmi4_data->reset_device = synaptics_rmi4_reset_device;
mutex_init(&(rmi4_data->rmi4_io_ctrl_mutex));
mutex_init(&(rmi4_data->rmi4_reset_mutex));
retval = synaptics_dsx_regulator_configure(rmi4_data);
if (retval) {
dev_err(&pdev->dev,
"%s: regulator configuration failed\n", __func__);
goto err_regulator_configure;
}
retval = synaptics_dsx_regulator_enable(rmi4_data, true);
if (retval) {
dev_err(&pdev->dev,
"%s: regulator enable failed\n", __func__);
goto err_regulator_enable;
}
platform_set_drvdata(pdev, rmi4_data);
if (bdata->gpio_config) {
retval = synaptics_rmi4_set_gpio(rmi4_data);
if (retval < 0) {
dev_err(&pdev->dev,
"%s: Failed to set up GPIO's\n",
__func__);
goto err_set_gpio;
}
} else {
retval = synaptics_dsx_pinctrl_init(rmi4_data);
if (!retval && rmi4_data->ts_pinctrl) {
/*
* Pinctrl handle is optional. If pinctrl handle is found
* let pins to be configured in active state. If not
* found continue further without error.
*/
retval = pinctrl_select_state(rmi4_data->ts_pinctrl,
rmi4_data->pinctrl_state_active);
if (retval < 0) {
dev_err(&pdev->dev,
"%s: Failed to select %s pinstate %d\n",
__func__, PINCTRL_STATE_ACTIVE, retval);
}
}
retval = synaptics_dsx_gpio_configure(rmi4_data, true);
if (retval < 0) {
dev_err(&pdev->dev,
"%s: Failed to set up GPIO's\n",
__func__);
goto err_config_gpio;
}
}
if (bdata->fw_name) {
len = strlen(bdata->fw_name);
if (len > SYNA_FW_NAME_MAX_LEN - 1) {
dev_err(&pdev->dev, "Invalid firmware name\n");
goto err_set_input_dev;
}
strlcpy(rmi4_data->fw_name, bdata->fw_name, len + 1);
}
retval = synaptics_rmi4_set_input_dev(rmi4_data);
if (retval < 0) {
dev_err(&pdev->dev,
"%s: Failed to set up input device\n",
__func__);
goto err_set_input_dev;
}
#ifdef CONFIG_FB
rmi4_data->fb_notif.notifier_call = fb_notifier_callback;
retval = fb_register_client(&rmi4_data->fb_notif);
if (retval)
dev_err(rmi4_data->pdev->dev.parent,
"Unable to register fb_notifier: %d\n", retval);
#elif defined(CONFIG_HAS_EARLYSUSPEND)
rmi4_data->early_suspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN + 1;
rmi4_data->early_suspend.suspend = synaptics_rmi4_early_suspend;
rmi4_data->early_suspend.resume = synaptics_rmi4_late_resume;
register_early_suspend(&rmi4_data->early_suspend);
#endif
rmi4_data->irq = gpio_to_irq(bdata->irq_gpio);
retval = synaptics_rmi4_irq_enable(rmi4_data, true);
if (retval < 0) {
dev_err(&pdev->dev,
"%s: Failed to enable attention interrupt\n",
__func__);
goto err_enable_irq;
}
if (!exp_data.initialized) {
mutex_init(&exp_data.mutex);
INIT_LIST_HEAD(&exp_data.list);
exp_data.initialized = true;
}
exp_data.workqueue = create_singlethread_workqueue("dsx_exp_workqueue");
INIT_DELAYED_WORK(&exp_data.work, synaptics_rmi4_exp_fn_work);
exp_data.rmi4_data = rmi4_data;
exp_data.queue_work = true;
queue_delayed_work(exp_data.workqueue,
&exp_data.work,
msecs_to_jiffies(EXP_FN_WORK_DELAY_MS));
rmi4_data->dir = debugfs_create_dir(DEBUGFS_DIR_NAME, NULL);
if (rmi4_data->dir == NULL || IS_ERR(rmi4_data->dir)) {
retval = rmi4_data->dir ? PTR_ERR(rmi4_data->dir) : -EIO;
dev_err(&pdev->dev,
"%s: Failed to create debugfs directory, rc = %d\n",
__func__, retval);
goto err_create_debugfs_dir;
}
temp = debugfs_create_file("suspend", S_IRUSR | S_IWUSR, rmi4_data->dir,
rmi4_data, &debug_suspend_fops);
if (temp == NULL || IS_ERR(temp)) {
retval = temp ? PTR_ERR(temp) : -EIO;
dev_err(&pdev->dev,
"%s: Failed to create suspend debugfs file, rc = %d\n",
__func__, retval);
goto err_create_debugfs_file;
}
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
retval = sysfs_create_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
if (retval < 0) {
dev_err(&pdev->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
goto err_sysfs;
}
}
synaptics_secure_touch_init(rmi4_data);
synaptics_secure_touch_stop(rmi4_data, 1);
return retval;
err_sysfs:
for (attr_count--; attr_count >= 0; attr_count--) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
err_create_debugfs_file:
debugfs_remove_recursive(rmi4_data->dir);
err_create_debugfs_dir:
cancel_delayed_work_sync(&exp_data.work);
flush_workqueue(exp_data.workqueue);
destroy_workqueue(exp_data.workqueue);
synaptics_rmi4_irq_enable(rmi4_data, false);
free_irq(rmi4_data->irq, rmi4_data);
err_enable_irq:
#if defined(CONFIG_FB)
fb_unregister_client(&rmi4_data->fb_notif);
#elif defined(CONFIG_HAS_EARLYSUSPEND)
unregister_early_suspend(&rmi4_data->early_suspend);
#endif
synaptics_rmi4_empty_fn_list(rmi4_data);
input_unregister_device(rmi4_data->input_dev);
rmi4_data->input_dev = NULL;
err_set_input_dev:
if (bdata->gpio_config) {
bdata->gpio_config(
bdata->irq_gpio,
false, 0, 0);
if (bdata->reset_gpio >= 0) {
bdata->gpio_config(
bdata->reset_gpio,
false, 0, 0);
}
if (bdata->power_gpio >= 0) {
bdata->gpio_config(
bdata->power_gpio,
false, 0, 0);
}
} else {
synaptics_dsx_gpio_configure(rmi4_data, false);
}
err_config_gpio:
if (rmi4_data->ts_pinctrl) {
if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_release)) {
devm_pinctrl_put(rmi4_data->ts_pinctrl);
rmi4_data->ts_pinctrl = NULL;
} else {
retval = pinctrl_select_state(
rmi4_data->ts_pinctrl,
rmi4_data->pinctrl_state_release);
if (retval)
dev_err(&pdev->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
}
}
err_set_gpio:
regulator_disable(rmi4_data->regulator_vdd);
regulator_disable(rmi4_data->regulator_avdd);
err_regulator_enable:
regulator_put(rmi4_data->regulator_vdd);
regulator_put(rmi4_data->regulator_avdd);
err_regulator_configure:
kfree(rmi4_data);
return retval;
}
/**
* synaptics_rmi4_remove()
*
* Called by the kernel when the association with an I2C device of the
* same name is broken (when the driver is unloaded).
*
* This funtion terminates the work queue, stops sensor data acquisition,
* frees the interrupt, unregisters the driver from the input subsystem,
* turns off the power to the sensor, and frees other allocated resources.
*/
static int synaptics_rmi4_remove(struct platform_device *pdev)
{
unsigned char attr_count;
struct synaptics_rmi4_data *rmi4_data = platform_get_drvdata(pdev);
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
int err;
if (rmi4_data->support_vkeys) {
sysfs_remove_group(vkey_kobj, &vkey_grp);
kobject_put(vkey_kobj);
}
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
debugfs_remove_recursive(rmi4_data->dir);
cancel_delayed_work_sync(&exp_data.work);
flush_workqueue(exp_data.workqueue);
destroy_workqueue(exp_data.workqueue);
synaptics_rmi4_irq_enable(rmi4_data, false);
#if defined(CONFIG_FB)
fb_unregister_client(&rmi4_data->fb_notif);
#elif defined(CONFIG_HAS_EARLYSUSPEND)
unregister_early_suspend(&rmi4_data->early_suspend);
#endif
synaptics_rmi4_empty_fn_list(rmi4_data);
input_unregister_device(rmi4_data->input_dev);
rmi4_data->input_dev = NULL;
if (bdata->gpio_config) {
bdata->gpio_config(
bdata->irq_gpio,
false, 0, 0);
if (bdata->reset_gpio >= 0) {
bdata->gpio_config(
bdata->reset_gpio,
false, 0, 0);
}
if (bdata->power_gpio >= 0) {
bdata->gpio_config(
bdata->power_gpio,
false, 0, 0);
}
} else {
synaptics_dsx_gpio_configure(rmi4_data, false);
if (rmi4_data->ts_pinctrl) {
if (IS_ERR_OR_NULL(rmi4_data->pinctrl_state_release)) {
devm_pinctrl_put(rmi4_data->ts_pinctrl);
rmi4_data->ts_pinctrl = NULL;
} else {
err = pinctrl_select_state(
rmi4_data->ts_pinctrl,
rmi4_data->pinctrl_state_release);
if (err)
dev_err(&pdev->dev,
"Failed to select release pinctrl state %d\n",
err);
}
}
}
if (rmi4_data->regulator_vdd) {
regulator_disable(rmi4_data->regulator_vdd);
regulator_put(rmi4_data->regulator_vdd);
}
if (rmi4_data->regulator_avdd) {
regulator_disable(rmi4_data->regulator_avdd);
regulator_put(rmi4_data->regulator_avdd);
}
kfree(rmi4_data);
return 0;
}
#if defined(CONFIG_FB)
static int fb_notifier_callback(struct notifier_block *self,
unsigned long event, void *data)
{
struct fb_event *evdata = data;
int *blank;
struct synaptics_rmi4_data *rmi4_data =
container_of(self, struct synaptics_rmi4_data, fb_notif);
if (evdata && evdata->data && rmi4_data) {
if (event == FB_EARLY_EVENT_BLANK)
synaptics_secure_touch_stop(rmi4_data, 0);
else if (event == FB_EVENT_BLANK) {
blank = evdata->data;
if (*blank == FB_BLANK_UNBLANK)
synaptics_rmi4_resume(
&(rmi4_data->input_dev->dev));
else if (*blank == FB_BLANK_POWERDOWN)
synaptics_rmi4_suspend(
&(rmi4_data->input_dev->dev));
}
}
return 0;
}
#elif defined(CONFIG_HAS_EARLYSUSPEND)
/**
* synaptics_rmi4_early_suspend()
*
* Called by the kernel during the early suspend phase when the system
* enters suspend.
*
* This function calls synaptics_rmi4_sensor_sleep() to stop finger
* data acquisition and put the sensor to sleep.
*/
static void synaptics_rmi4_early_suspend(struct early_suspend *h)
{
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_data *rmi4_data =
container_of(h, struct synaptics_rmi4_data,
early_suspend);
if (rmi4_data->stay_awake) {
rmi4_data->staying_awake = true;
return;
} else {
rmi4_data->staying_awake = false;
}
synaptics_secure_touch_stop(rmi4_data, 0);
rmi4_data->touch_stopped = true;
synaptics_rmi4_irq_enable(rmi4_data, false);
synaptics_rmi4_sensor_sleep(rmi4_data);
synaptics_rmi4_free_fingers(rmi4_data);
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->early_suspend != NULL)
exp_fhandler->exp_fn->early_suspend(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
if (rmi4_data->full_pm_cycle)
synaptics_rmi4_suspend(&(rmi4_data->input_dev->dev));
return;
}
/**
* synaptics_rmi4_late_resume()
*
* Called by the kernel during the late resume phase when the system
* wakes up from suspend.
*
* This function goes through the sensor wake process if the system wakes
* up from early suspend (without going into suspend).
*/
static void synaptics_rmi4_late_resume(struct early_suspend *h)
{
int retval;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_data *rmi4_data =
container_of(h, struct synaptics_rmi4_data,
early_suspend);
if (rmi4_data->staying_awake)
return;
synaptics_secure_touch_stop(rmi4_data, 0);
if (rmi4_data->full_pm_cycle)
synaptics_rmi4_resume(&(rmi4_data->input_dev->dev));
if (rmi4_data->sensor_sleep == true) {
synaptics_rmi4_sensor_wake(rmi4_data);
synaptics_rmi4_irq_enable(rmi4_data, true);
retval = synaptics_rmi4_reinit_device(rmi4_data);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to reinit device\n",
__func__);
}
}
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->late_resume != NULL)
exp_fhandler->exp_fn->late_resume(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
rmi4_data->touch_stopped = false;
return;
}
#endif
#ifdef CONFIG_PM
/**
* synaptics_rmi4_sensor_sleep()
*
* Called by synaptics_rmi4_early_suspend() and synaptics_rmi4_suspend().
*
* This function stops finger data acquisition and puts the sensor to sleep.
*/
static void synaptics_rmi4_sensor_sleep(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char device_ctrl;
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to enter sleep mode\n",
__func__);
rmi4_data->sensor_sleep = false;
return;
}
device_ctrl = (device_ctrl & ~MASK_3BIT);
device_ctrl = (device_ctrl | NO_SLEEP_OFF | SENSOR_SLEEP);
retval = synaptics_rmi4_reg_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to enter sleep mode\n",
__func__);
rmi4_data->sensor_sleep = false;
return;
} else {
rmi4_data->sensor_sleep = true;
}
return;
}
/**
* synaptics_rmi4_sensor_wake()
*
* Called by synaptics_rmi4_resume() and synaptics_rmi4_late_resume().
*
* This function wakes the sensor from sleep.
*/
static void synaptics_rmi4_sensor_wake(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char device_ctrl;
unsigned char no_sleep_setting = rmi4_data->no_sleep_setting;
retval = synaptics_rmi4_reg_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to wake from sleep mode\n",
__func__);
rmi4_data->sensor_sleep = true;
return;
}
device_ctrl = (device_ctrl & ~MASK_3BIT);
device_ctrl = (device_ctrl | no_sleep_setting | NORMAL_OPERATION);
retval = synaptics_rmi4_reg_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to wake from sleep mode\n",
__func__);
rmi4_data->sensor_sleep = true;
return;
} else {
rmi4_data->sensor_sleep = false;
}
return;
}
/**
* synaptics_rmi4_suspend()
*
* Called by the kernel during the suspend phase when the system
* enters suspend.
*
* This function stops finger data acquisition and puts the sensor to
* sleep (if not already done so during the early suspend phase),
* disables the interrupt, and turns off the power to the sensor.
*/
static int synaptics_rmi4_suspend(struct device *dev)
{
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
int retval;
if (rmi4_data->stay_awake) {
rmi4_data->staying_awake = true;
return 0;
} else {
rmi4_data->staying_awake = false;
}
if (rmi4_data->suspended) {
dev_info(dev, "Already in suspend state\n");
return 0;
}
synaptics_secure_touch_stop(rmi4_data, 1);
if (!rmi4_data->fw_updating) {
if (!rmi4_data->sensor_sleep) {
rmi4_data->touch_stopped = true;
synaptics_rmi4_irq_enable(rmi4_data, false);
synaptics_rmi4_sensor_sleep(rmi4_data);
synaptics_rmi4_free_fingers(rmi4_data);
}
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->suspend != NULL)
exp_fhandler->exp_fn->suspend(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
retval = synaptics_dsx_regulator_enable(rmi4_data, false);
if (retval < 0) {
dev_err(dev, "failed to enter low power mode\n");
goto err_lpm_regulator;
}
} else {
dev_err(dev,
"Firmware updating, cannot go into suspend mode\n");
return 0;
}
if (bdata->disable_gpios) {
if (rmi4_data->ts_pinctrl) {
retval = pinctrl_select_state(rmi4_data->ts_pinctrl,
rmi4_data->pinctrl_state_suspend);
if (retval < 0) {
dev_err(dev, "Cannot get idle pinctrl state\n");
goto err_pinctrl_select_suspend;
}
}
retval = synaptics_dsx_gpio_configure(rmi4_data, false);
if (retval < 0) {
dev_err(dev, "failed to put gpios in suspend state\n");
goto err_gpio_configure;
}
}
rmi4_data->suspended = true;
return 0;
err_gpio_configure:
if (rmi4_data->ts_pinctrl) {
retval = pinctrl_select_state(rmi4_data->ts_pinctrl,
rmi4_data->pinctrl_state_active);
if (retval < 0)
dev_err(dev, "Cannot get default pinctrl state\n");
}
err_pinctrl_select_suspend:
synaptics_dsx_regulator_enable(rmi4_data, true);
err_lpm_regulator:
if (rmi4_data->sensor_sleep) {
synaptics_rmi4_sensor_wake(rmi4_data);
synaptics_rmi4_irq_enable(rmi4_data, true);
rmi4_data->touch_stopped = false;
}
return retval;
}
/**
* synaptics_rmi4_resume()
*
* Called by the kernel during the resume phase when the system
* wakes up from suspend.
*
* This function turns on the power to the sensor, wakes the sensor
* from sleep, enables the interrupt, and starts finger data
* acquisition.
*/
static int synaptics_rmi4_resume(struct device *dev)
{
int retval;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
const struct synaptics_dsx_board_data *bdata =
rmi4_data->hw_if->board_data;
if (rmi4_data->staying_awake)
return 0;
if (!rmi4_data->suspended)
return 0;
synaptics_secure_touch_stop(rmi4_data, 1);
synaptics_dsx_regulator_enable(rmi4_data, true);
if (bdata->disable_gpios) {
if (rmi4_data->ts_pinctrl) {
retval = pinctrl_select_state(rmi4_data->ts_pinctrl,
rmi4_data->pinctrl_state_active);
if (retval < 0)
dev_err(dev, "Cannot get default pinctrl state\n");
}
retval = synaptics_dsx_gpio_configure(rmi4_data, true);
if (retval < 0)
dev_err(dev, "Failed to put gpios in active state\n");
}
synaptics_rmi4_sensor_wake(rmi4_data);
retval = synaptics_rmi4_reinit_device(rmi4_data);
if (retval < 0) {
dev_err(rmi4_data->pdev->dev.parent,
"%s: Failed to reinit device\n",
__func__);
return retval;
}
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->resume != NULL)
exp_fhandler->exp_fn->resume(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
rmi4_data->touch_stopped = false;
rmi4_data->suspended = false;
synaptics_rmi4_irq_enable(rmi4_data, true);
return 0;
}
static const struct dev_pm_ops synaptics_rmi4_dev_pm_ops = {
#if (!defined(CONFIG_FB) && !defined(CONFIG_HAS_EARLYSUSPEND))
.suspend = synaptics_rmi4_suspend,
.resume = synaptics_rmi4_resume,
#endif
};
#else
static int synaptics_rmi4_suspend(struct device *dev)
{
dev_err(dev, "PM not supported\n");
return -EINVAL;
}
static int synaptics_rmi4_resume(struct device *dev)
{
dev_err(dev, "PM not supported\n");
return -EINVAL;
}
#endif
static struct platform_driver synaptics_rmi4_driver = {
.driver = {
.name = PLATFORM_DRIVER_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &synaptics_rmi4_dev_pm_ops,
#endif
},
.probe = synaptics_rmi4_probe,
.remove = synaptics_rmi4_remove,
};
/**
* synaptics_rmi4_init()
*
* Called by the kernel during do_initcalls (if built-in)
* or when the driver is loaded (if a module).
*
* This function registers the driver to the I2C subsystem.
*
*/
static int __init synaptics_rmi4_init(void)
{
int retval;
retval = synaptics_rmi4_bus_init();
if (retval)
return retval;
return platform_driver_register(&synaptics_rmi4_driver);
}
/**
* synaptics_rmi4_exit()
*
* Called by the kernel when the driver is unloaded.
*
* This funtion unregisters the driver from the I2C subsystem.
*
*/
static void __exit synaptics_rmi4_exit(void)
{
platform_driver_unregister(&synaptics_rmi4_driver);
synaptics_rmi4_bus_exit();
return;
}
module_init(synaptics_rmi4_init);
module_exit(synaptics_rmi4_exit);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("Synaptics DSX I2C Touch Driver");
MODULE_LICENSE("GPL v2");