Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WLP-Parser: A wet lab protocol sequence tagger along with relation extraction.

This repository contains a collection of neural network models that we used to demostrate the utility of our dataset. These networks were trained using Pytorch.

A more detailed description of the wet lab protocol corpus can be found in this paper:

An Annotated Corpus for Machine Reading of Instructions in Wet Lab Protocols
Chaitanya Kulkarni, Wei Xu, Alan Ritter, Raghu Machiraju
In Proceedings of 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT, 2018)

Additional information regarding the action, entities and relations can be found here.

Also check out a working demo for sequence tagging and relation extraction using the methods in this repository.

Usage

[TO BE POPULATED]

Additional References

For Maximum Entropy Model used to label all the actions, entities and relations

A maximum entropy approach to named entity recognition.
Marek Rei and Helen Yannakoudakis
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL-2016)

For LSTM + CRF Model used for labelling actions and entities

Neural Architectures for Named Entity Recognition Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, Chris Dyer In Proceedings of 14th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT, 2016)

License

Licensed under the MIT License.

About

This repository contains a collection of neural network models that we used to demonstrate the utility of our dataset.

Topics

Resources

Packages

No packages published

Languages