Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature request: Assign rule by layer index #76

Closed
rodrigobdz opened this issue Dec 10, 2021 · 2 comments
Closed

Feature request: Assign rule by layer index #76

rodrigobdz opened this issue Dec 10, 2021 · 2 comments

Comments

@rodrigobdz
Copy link
Contributor

rodrigobdz commented Dec 10, 2021

I'd like to assign LRP-rules by layer index, like shown in the screenshots.
Please correct me if this is already possible, I've taken a look at the code and the paper but it seems currently it's only possible by type.

image

Source: gmontavon/lrp-tutorial

image

Source: Layer-Wise Relevance Propagation: An Overview

Thanks for the great framework! I especially like its architecture.

@chr5tphr
Copy link
Owner

chr5tphr commented Dec 10, 2021

A note about the code from the tutorial:
The last line if l >= 31: will actually never happen for vgg16, since there are no AvgPool2d or Conv2d layers beyond index 30.
Also, the LRP-0 above is more like the conventional LRP-Epsilon rule, and the LRP-Epsilon rule above depends on the output, and as such is not really the conventional LRP-Epsilon rule

While it would be straight forward to write a composite which does take the layer index into account, I would suggest to rather go with the NameMapComposite here, since the rules are very model-dependent and it's much more transparent than any index-based approach.

If you want to automatically create a name-map as the composite from the tutorial/ paper, here's some code on how to do it:

Click to unfold code
import torch
from torch.nn import Conv2d, AvgPool2d
from torchvision.models import vgg16

from zennit.composites import NameMapComposite
from zennit.core import BasicHook, collect_leaves, stabilize
from zennit.rules import Gamma, Epsilon


# the LRP-Epsilon from the tutorial
class GMontavonEpsilon(BasicHook):
    def __init__(self, epsilon=1e-6, delta=0.25):
        super().__init__(
            input_modifiers=[lambda input: input],
            param_modifiers=[lambda param, _: param],
            output_modifiers=[lambda output: output],
            gradient_mapper=(lambda out_grad, outputs: out_grad / stabilize(outputs[0] + delta * (outputs[0] ** 2).mean() ** .5, epsilon)),
            reducer=(lambda inputs, gradients: inputs[0] * gradients[0])
        )

model = vgg16()

# only these get rules, linear layers will be attributed by the gradient alone
target_types = (Conv2d, AvgPool2d)
# lookup module -> name
child_name = {module: name for name, module in model.named_modules()}
# the layers in sequential order without any containers etc.
layers = list(enumerate(collect_leaves(model)))

# list of tuples [([names..], rule)] as used by NameMapComposite
name_map = [
    ([child_name[module] for n, module in layers if n <= 16 and isinstance(module, target_types)], Gamma(0.25)),
    ([child_name[module] for n, module in layers if 17 <= n <= 30 and isinstance(module, target_types)], GMontavonEpsilon(1e-9, 0.25)),
    ([child_name[module] for n, module in layers if 30 <= n and isinstance(module, target_types)], Epsilon(1e-9)),
]
# look at the name_map and you will see that there is no layer for which the last condition holds
print(name_map)

# create the composite from the name map
composite = NameMapComposite(name_map)

with composite.context(model) as modified_model:
    # compute attribution
    data = torch.randn(1, 3, 224, 224, requires_grad=True)
    output = modified_model(data)
    output.backward(torch.eye(1000)[[0]])
    # print absolute sum of attribution
    print(data.grad.abs().sum().item())

Note that doing model.named_modules() alone will give you all modules, eg. Sequential, and thus not count the layers correctly for vgg16. However, when manually constructing a name-map, this will show you the names of all layers.

@rodrigobdz
Copy link
Contributor Author

rodrigobdz commented Dec 13, 2021

@chr5tphr Awesome! Thank you for your time, the snippet has been of great help.


Clarification about the tutorial:

  • The case if l >= 31: is indeed evaluated because dense layers in the classifier are converted to convolutional layers in this LOC:

    layers = list(model.features) + utils.toconv(list(model.classifier))

With your help, I've been able to reproduce the results from the LRP tutorial; here are the changes I made:

  1. Set data to castle image, then I plotted the heatmap but it lacked the attributions from the classifier layers and the ZBox rule for the pixel layer.

    castle

    Code diff

     import torch
    from torch.nn import Conv2d, AvgPool2d
    from torchvision.models import vgg16
    
    from zennit.composites import NameMapComposite
    from zennit.core import BasicHook, collect_leaves, stabilize
    from zennit.rules import Gamma, Epsilon
    
    +import cv2
    +import numpy
    +import utils
    
    # the LRP-Epsilon from the tutorial
    class GMontavonEpsilon(BasicHook):
        def __init__(self, epsilon=1e-6, delta=0.25):
            super().__init__(
                input_modifiers=[lambda input: input],
                param_modifiers=[lambda param, _: param],
                output_modifiers=[lambda output: output],
                gradient_mapper=(lambda out_grad, outputs: out_grad / stabilize(outputs[0] + delta * (outputs[0] ** 2).mean() ** .5, epsilon)),
                reducer=(lambda inputs, gradients: inputs[0] * gradients[0])
            )
    
    model = vgg16()
    
    +class BatchNormalize:
    +    def __init__(self, mean, std, device=None):
    +        self.mean = torch.tensor(mean, device=device)[None, :, None, None]
    +        self.std = torch.tensor(std, device=device)[None, :, None, None]
    +
    +    def __call__(self, tensor):
    +        return (tensor - self.mean) / self.std
    +
    +
    +# mean and std of ILSVRC2012 as computed for the torchvision models
    +norm_fn = BatchNormalize((0.485, 0.456, 0.406),
    +                         (0.229, 0.224, 0.225), device='cpu')
    +
    # only these get rules, linear layers will be attributed by the gradient alone
    target_types = (Conv2d, AvgPool2d)
    # lookup module -> name
    child_name = {module: name for name, module in model.named_modules()}
    # the layers in sequential order without any containers etc.
    layers = list(enumerate(collect_leaves(model)))
    
    # list of tuples [([names..], rule)] as used by NameMapComposite
    name_map = [
        ([child_name[module] for n, module in layers if n <= 16 and isinstance(module, target_types)], Gamma(0.25)),
        ([child_name[module] for n, module in layers if 17 <= n <= 30 and isinstance(module, target_types)], GMontavonEpsilon(1e-9, 0.25)),
        ([child_name[module] for n, module in layers if 30 <= n and isinstance(module, target_types)], Epsilon(1e-9)),
    ]
    # look at the name_map and you will see that there is no layer for which the last condition holds
    print(name_map)
    
    # create the composite from the name map
    composite = NameMapComposite(name_map)
    
    +R = None
    with composite.context(model) as modified_model:
        # compute attribution
    -    data = torch.randn(1, 3, 224, 224, requires_grad=True)
    +    # Returns a numpy array in BGR color space, not RGB
    +    img = cv2.imread('castle.jpg')
    +
    +    # Convert from BGR to RGB color space
    +    img = img[..., ::-1]
    +
    +    # img.shape is (224, 224, 3), where 3 corresponds to RGB channels
    +    # Divide by 255 (max. RGB value) to normalize pixel values to [0,1]
    +    img = img/255.0
    +
    +    data = norm_fn(
    +        torch.FloatTensor(
    +            img[numpy.newaxis].transpose([0, 3, 1, 2])*1
    +        )
    +    )
    +    data.requires_grad = True
    +
        output = modified_model(data)
    -    output.backward(torch.eye(1000)[[0]])
    +    output[0].max().backward()
    +
        # print absolute sum of attribution
        print(data.grad.abs().sum().item())
    +
    +    R = data.grad
    +
    +    utils.heatmap(R[0].sum(dim=0).detach().numpy(), 4,4)

    heatmap

  2. Finally, added Linear to target_types, fixed LRP-0 rule, and assigned ZBox-rule to pixel layer.

    Code diff

     import torch
    -from torch.nn import Conv2d, AvgPool2d
    +from torch.nn import Conv2d, AvgPool2d, Linear
    from torchvision.models import vgg16
    
    from zennit.composites import NameMapComposite
    from zennit.core import BasicHook, collect_leaves, stabilize
    -from zennit.rules import Gamma, Epsilon
    +from zennit.rules import Gamma, Epsilon, ZBox
    
    import cv2
    import numpy
    import utils
    
    # the LRP-Epsilon from the tutorial
    class GMontavonEpsilon(BasicHook):
    -    def __init__(self, epsilon=1e-6, delta=0.25):
    +    def __init__(self, stabilize_epsilon=1e-6, epsilon=0.25):
            super().__init__(
                input_modifiers=[lambda input: input],
                param_modifiers=[lambda param, _: param],
                output_modifiers=[lambda output: output],
    -            gradient_mapper=(lambda out_grad, outputs: out_grad / stabilize(outputs[0] + delta * (outputs[0] ** 2).mean() ** .5, epsilon)),
    +            gradient_mapper=(lambda out_grad, outputs: out_grad / stabilize(
    +                outputs[0] + epsilon * (outputs[0] ** 2).mean() ** .5, stabilize_epsilon)),
                reducer=(lambda inputs, gradients: inputs[0] * gradients[0])
            )
    
    -model = vgg16()
    +
    +# use the gpu if requested and available, else use the cpu
    +device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    +
    
    class BatchNormalize:
        def __init__(self, mean, std, device=None):
            self.mean = torch.tensor(mean, device=device)[None, :, None, None]
            self.std = torch.tensor(std, device=device)[None, :, None, None]
    
        def __call__(self, tensor):
            return (tensor - self.mean) / self.std
    
    
    # mean and std of ILSVRC2012 as computed for the torchvision models
    norm_fn = BatchNormalize((0.485, 0.456, 0.406),
    -                         (0.229, 0.224, 0.225), device='cpu')
    +                         (0.229, 0.224, 0.225), device=device)
    +batch_size = 1
    +# the maximal input shape, needed for the ZBox rule
    +shape = (batch_size, 3, 224, 224)
    +
    +# the highest and lowest pixel values for the ZBox rule
    +low = norm_fn(torch.zeros(*shape, device=device))
    +high = norm_fn(torch.ones(*shape, device=device))
    +
    +
    +model = vgg16(pretrained=True)
    +model.eval()
    
    # only these get rules, linear layers will be attributed by the gradient alone
    -target_types = (Conv2d, AvgPool2d)
    +target_types = (Conv2d, AvgPool2d, Linear)
    # lookup module -> name
    child_name = {module: name for name, module in model.named_modules()}
    # the layers in sequential order without any containers etc.
    layers = list(enumerate(collect_leaves(model)))
    
    # list of tuples [([names..], rule)] as used by NameMapComposite
    name_map = [
    -    ([child_name[module] for n, module in layers if n <= 16 and isinstance(module, target_types)], Gamma(0.25)),
    -    ([child_name[module] for n, module in layers if 17 <= n <= 30 and isinstance(module, target_types)], GMontavonEpsilon(1e-9, 0.25)),
    -    ([child_name[module] for n, module in layers if 30 <= n and isinstance(module, target_types)], Epsilon(1e-9)),
    +    ([child_name[module] for n, module in layers if n == 0 and isinstance(module, target_types)], ZBox(low=low, high=high)),
    +    ([child_name[module] for n, module in layers if 1 <= n <= 16 and isinstance(module, target_types)], Gamma(0.25)),
    +    ([child_name[module] for n, module in layers if 17 <= n <= 30 and isinstance(module, target_types)], GMontavonEpsilon(stabilize_epsilon=0, epsilon=0.25)),
    +    ([child_name[module] for n, module in layers if 31 <= n and isinstance(module, target_types)], Epsilon(0)),
    ]
    +
    # look at the name_map and you will see that there is no layer for which the last condition holds
    print(name_map)
    
    # create the composite from the name map
    composite = NameMapComposite(name_map)
    
    R = None
    with composite.context(model) as modified_model:
        # compute attribution
        # Returns a numpy array in BGR color space, not RGB
        img = cv2.imread('castle.jpg')
    
        # Convert from BGR to RGB color space
        img = img[..., ::-1]
    
        # img.shape is (224, 224, 3), where 3 corresponds to RGB channels
        # Divide by 255 (max. RGB value) to normalize pixel values to [0,1]
        img = img/255.0
    
        data = norm_fn(
            torch.FloatTensor(
                img[numpy.newaxis].transpose([0, 3, 1, 2])*1
            )
        )
        data.requires_grad = True
    
        output = modified_model(data)
        output[0].max().backward()
    
        # print absolute sum of attribution
        print(data.grad.abs().sum().item())
    
        R = data.grad
    
        utils.heatmap(R[0].sum(dim=0).detach().numpy(), 4,4)

    rod-heatmap

    Python code

    import torch
    from torch.nn import Conv2d, AvgPool2d, Linear
    from torchvision.models import vgg16
    
    from zennit.composites import NameMapComposite
    from zennit.core import BasicHook, collect_leaves, stabilize
    from zennit.rules import Gamma, Epsilon, ZBox
    
    import cv2
    import numpy
    import utils
    
    # the LRP-Epsilon from the tutorial
    class GMontavonEpsilon(BasicHook):
        def __init__(self, stabilize_epsilon=1e-6, epsilon=0.25):
            super().__init__(
                input_modifiers=[lambda input: input],
                param_modifiers=[lambda param, _: param],
                output_modifiers=[lambda output: output],
                gradient_mapper=(lambda out_grad, outputs: out_grad / stabilize(
                    outputs[0] + epsilon * (outputs[0] ** 2).mean() ** .5, stabilize_epsilon)),
                reducer=(lambda inputs, gradients: inputs[0] * gradients[0])
            )
    
    # use the gpu if requested and available, else use the cpu
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    
    # Source: https://github.com/chr5tphr/zennit/blob/6251a9e17aa31c3381799de92f92b1d259b392b2/share/example/feed_forward.py#L32-L38
    class BatchNormalize:
        def __init__(self, mean, std, device=None):
            self.mean = torch.tensor(mean, device=device)[None, :, None, None]
            self.std = torch.tensor(std, device=device)[None, :, None, None]
    
        def __call__(self, tensor):
            return (tensor - self.mean) / self.std
    
    
    # mean and std of ILSVRC2012 as computed for the torchvision models
    norm_fn = BatchNormalize((0.485, 0.456, 0.406),
                            (0.229, 0.224, 0.225), device=device)
    batch_size = 1
    # the maximal input shape, needed for the ZBox rule
    shape = (batch_size, 3, 224, 224)
    
    # the highest and lowest pixel values for the ZBox rule
    low = norm_fn(torch.zeros(*shape, device=device))
    high = norm_fn(torch.ones(*shape, device=device))
    
    
    model = vgg16(pretrained=True)
    model.eval()
    
    # only these get rules, linear layers will be attributed by the gradient alone
    # target_types = (Conv2d, AvgPool2d)
    target_types = (Conv2d, AvgPool2d, Linear)
    # lookup module -> name
    child_name = {module: name for name, module in model.named_modules()}
    # the layers in sequential order without any containers etc.
    layers = list(enumerate(collect_leaves(model)))
    
    # list of tuples [([names..], rule)] as used by NameMapComposite
    name_map = [
        ([child_name[module] for n, module in layers if n == 0 and isinstance(module, target_types)], ZBox(low=low, high=high)),
        ([child_name[module] for n, module in layers if 1 <= n <= 16 and isinstance(module, target_types)], Gamma(0.25)),
        ([child_name[module] for n, module in layers if 17 <= n <= 30 and isinstance(module, target_types)], GMontavonEpsilon(stabilize_epsilon=0, epsilon=0.25)),
        ([child_name[module] for n, module in layers if 31 <= n and isinstance(module, target_types)], Epsilon(0)),
    ]
    
    # look at the name_map and you will see that there is no layer for which the last condition holds
    display(name_map)
    
    # create the composite from the name map
    composite = NameMapComposite(name_map)
    
    R = None
    with composite.context(model) as modified_model:
        # compute attribution
        # Returns a numpy array in BGR color space, not RGB
        img = cv2.imread('castle.jpg')
    
        # Convert from BGR to RGB color space
        img = img[..., ::-1]
    
        # img.shape is (224, 224, 3), where 3 corresponds to RGB channels
        # Divide by 255 (max. RGB value) to normalize pixel values to [0,1]
        img = img/255.0
    
        data = norm_fn(
            torch.FloatTensor(
                img[numpy.newaxis].transpose([0, 3, 1, 2])*1
            )
        )
        data.requires_grad = True
    
        output = modified_model(data)
        output[0].max().backward()
    
        # print absolute sum of attribution
        print(data.grad.abs().sum().item())
    
        R = data.grad
    
        utils.heatmap(R[0].sum(dim=0).detach().numpy(), 4,4)

rodrigobdz added a commit to rodrigobdz/lrp that referenced this issue Dec 13, 2021
Reproduce gmontavon/lrp-tutorial with zennit framework.
Related issue chr5tphr/zennit#76.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants