Skip to content

Latest commit

 

History

History
129 lines (102 loc) · 5.71 KB

intro.rst

File metadata and controls

129 lines (102 loc) · 5.71 KB
.. only:: not (epub or latex or html)

    WARNING: You are looking at unreleased Cilium documentation.
    Please use the official rendered version released here:
    https://docs.cilium.io

Introduction to Cilium & Hubble

What is Cilium?

Cilium is open source software for transparently securing the network connectivity between application services deployed using Linux container management platforms like Docker and Kubernetes.

At the foundation of Cilium is a new Linux kernel technology called eBPF, which enables the dynamic insertion of powerful security visibility and control logic within Linux itself. Because eBPF runs inside the Linux kernel, Cilium security policies can be applied and updated without any changes to the application code or container configuration.

What is Hubble?

Hubble is a fully distributed networking and security observability platform. It is built on top of Cilium and eBPF to enable deep visibility into the communication and behavior of services as well as the networking infrastructure in a completely transparent manner.

By building on top of Cilium, Hubble can leverage eBPF for visibility. By relying on eBPF, all visibility is programmable and allows for a dynamic approach that minimizes overhead while providing deep and detailed visibility as required by users. Hubble has been created and specifically designed to make best use of these new eBPF powers.

Hubble can answer questions such as:

Service dependencies & communication map

  • What services are communicating with each other? How frequently? What does the service dependency graph look like?
  • What HTTP calls are being made? What Kafka topics does a service consume from or produce to?

Network monitoring & alerting

  • Is any network communication failing? Why is communication failing? Is it DNS? Is it an application or network problem? Is the communication broken on layer 4 (TCP) or layer 7 (HTTP)?
  • Which services have experienced a DNS resolution problem in the last 5 minutes? Which services have experienced an interrupted TCP connection recently or have seen connections timing out? What is the rate of unanswered TCP SYN requests?

Application monitoring

  • What is the rate of 5xx or 4xx HTTP response codes for a particular service or across all clusters?
  • What is the 95th and 99th percentile latency between HTTP requests and responses in my cluster? Which services are performing the worst? What is the latency between two services?

Security observability

  • Which services had connections blocked due to network policy? What services have been accessed from outside the cluster? Which services have resolved a particular DNS name?

Why Cilium & Hubble?

eBPF is enabling visibility into and control over systems and applications at a granularity and efficiency that was not possible before. It does so in a completely transparent way, without requiring the application to change in any way. eBPF is equally well-equipped to handle modern containerized workloads as well as more traditional workloads such as virtual machines and standard Linux processes.

The development of modern datacenter applications has shifted to a service-oriented architecture often referred to as microservices, wherein a large application is split into small independent services that communicate with each other via APIs using lightweight protocols like HTTP. Microservices applications tend to be highly dynamic, with individual containers getting started or destroyed as the application scales out / in to adapt to load changes and during rolling updates that are deployed as part of continuous delivery.

This shift toward highly dynamic microservices presents both a challenge and an opportunity in terms of securing connectivity between microservices. Traditional Linux network security approaches (e.g., iptables) filter on IP address and TCP/UDP ports, but IP addresses frequently churn in dynamic microservices environments. The highly volatile life cycle of containers causes these approaches to struggle to scale side by side with the application as load balancing tables and access control lists carrying hundreds of thousands of rules that need to be updated with a continuously growing frequency. Protocol ports (e.g. TCP port 80 for HTTP traffic) can no longer be used to differentiate between application traffic for security purposes as the port is utilized for a wide range of messages across services.

An additional challenge is the ability to provide accurate visibility as traditional systems are using IP addresses as primary identification vehicle which may have a drastically reduced lifetime of just a few seconds in microservices architectures.

By leveraging Linux eBPF, Cilium retains the ability to transparently insert security visibility + enforcement, but does so in a way that is based on service / pod / container identity (in contrast to IP address identification in traditional systems) and can filter on application-layer (e.g. HTTP). As a result, Cilium not only makes it simple to apply security policies in a highly dynamic environment by decoupling security from addressing, but can also provide stronger security isolation by operating at the HTTP-layer in addition to providing traditional Layer 3 and Layer 4 segmentation.

The use of eBPF enables Cilium to achieve all of this in a way that is highly scalable even for large-scale environments.

Functionality Overview