Cinema SuperComputing Tutorial 2020
This tutorial introduces core Cinema concepts and functionality. As part of this tutorial, you will export a Cinema database from ParaView and run a Jupyter notebook workflow that takes in a Cinema database, updates it by calculating various image statistics and then views the new Cinema database in a browser-based Cinema:Explorer viewer.
To run this tutorial, you will need:
- The latest version of ParaView: https://www.paraview.org/download/
- Python 3.7 or above
- pandas, numpy
- os, shutil
- cinemasci v1.1 or above
- openCV 4.4 or above
- skimage (scikit-image)
- notebook, jupyterlab
A Note on Browser Security
To use Cinema:Explorer, you must allow local file access. Do this in the following way, but be sure to reset these options when you are done:
- Firefox (preferred)
- type
about:config
in the navigaion bar- set
privacy.file_unique_origin
to false - set
security.fileuri.strict_origin_policy
to false
- set
- type
- Safari
- Safari->Preferences->Advanced->Show Develop menu in menu bar
- Safari->Develop->Disable Local File Restrictions (on)
- Chrome
- open chrome with the option
--disable-web-security
- Mac example:
open -na "Google Chrome" cinema_explorer.html --args --user-data-dir="YOUR_PATH_TO_REPO" --disable-web-security
- open chrome with the option
Starting the server
python -m cinemasci.server --port 8200 --viewer view --data data/sphere.cdb