Skip to content

Commit

Permalink
Finished alternative proof of Clebsch-Gordan.
Browse files Browse the repository at this point in the history
  • Loading branch information
cionx committed Aug 31, 2015
1 parent cb8e2de commit e71ac1a
Showing 1 changed file with 33 additions and 5 deletions.
38 changes: 33 additions & 5 deletions semisimple_Lie_algebras/sl2_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -552,19 +552,47 @@ \subsection{The Clebsch--Gordan decomposition}

To show the formula for $m = 1$ first notice the following:
\begin{claim*}
Let $V$ be a finite dimenisonal representation of $\sll_2(k)$. Suppose there exist a nonzero $v \in V$ with $h.v = r v$ and $e.v = 0$. Then $V$ contains a subrepresentation which is isomorphic to $V^{(r)}$.
Let $V$ be a finite dimenisonal representation of $\sll_2(k)$. Suppose there exist a nonzero $v \in V$ with $h.v = r v$ and $e.v = 0$ for $r \in \N$. Then $V$ contains a subrepresentation which is isomorphic to $V^{(r)}$.
\end{claim*}
\begin{proof}
Let $V = \bigoplus_{d \in \N} \bigoplus_{j=0}^{\nu_d} V^{d,j}$ be a decomposition into irreducible subrepresentations with $V^{d,j}$ being $(d+1)$-dimensional for every $d \in \N$ and $j = 1, \dotsc, \nu_d$. Then $v \in V_r = \bigoplus_{p \in \N, d = r+2p} \bigoplus_{j=0}^{\nu_d} V^{d,j}_r$. Suppose that $V$ contains no submodule which is isomorphic to $V^{(r)}$. Then $\nu_r = 0$ and therefore $v \in \bigoplus_{p \geq 1, d = r+2p} \bigoplus_{j=1}^{\nu_d} V^{d,j}_r$. Because $e.V^{d,j}_r = v^{d,j}_{r+2}$ for every $d > r$ and $j = 1, \dotsc, \nu_d$ it follows that $e$ maps $\bigoplus_{p \geq 1, d = r+2p} \bigoplus_{j=1}^{\nu_d} V^{d,j}_r$ isomorphically into $\bigoplus_{p \geq 1, d = r+2p} \bigoplus_{j=1}^{\nu_d} V^{d,j}_{r+2}$. Because $e.v = 0$ it follows that $e = 0$, contradicting the assumption that $v$ is nonzero.
Let $V = \bigoplus_{d \in \N} \bigoplus_{j=1}^{\nu_d} V^{d,j}$ be a decomposition into irreducible subrepresentations with $V^{d,j}$ having heighest weight $d$ for every $d \in \N$ and $j = 1, \dotsc, \nu_d$. Then $v \in V_r = \bigoplus_{p \in \N, d = r+2p} \bigoplus_{j=0}^{\nu_d} V^{d,j}_r$. Suppose that $V$ contains no submodule which is isomorphic to $V^{(r)}$. Then $\nu_r = 0$ and therefore $V_r = \bigoplus_{p \geq 1, d = r+2p} \bigoplus_{j=1}^{\nu_d} V^{d,j}_r$. Because $e.V^{d,j}_r = V^{d,j}_{r+2}$ for every $d > r$ and $j = 1, \dotsc, \nu_d$ it follows that $e$ maps $V_r = \bigoplus_{p \geq 1, d = r+2p} \bigoplus_{j=1}^{\nu_d} V^{d,j}_r$ isomorphically into $\bigoplus_{p \geq 1, d = r+2p} \bigoplus_{j=1}^{\nu_d} V^{d,j}_{r+2} \subseteq V_{r+2}$. Because $e.v = 0$ it follows that $e = 0$, contradicting the assumption that $v$ is nonzero.
\end{proof}

Let $v_{-n}, v_{-n+2}, \dotsc, v_{n-2}, v_n$ be a basis of $V^{(n)}$ with $v_i \in V_i$ for every $i$ and $e.v_{n-2} = v_n$ (notice that $n \geq m = 1$, so $v_{n-2}$ is well-defined). Similarly and $w_1, w_2$ a basis of $V^{(1)}$ with $w_j \in W_j$ for $j = 1,2$. Then $v_n \otimes w_1 \in V^{(n)} \otimes V^{(1)}$ with $h.(v_n \otimes w_1) = (n+1) v_n \otimes w_1$ and $e.(v_n \otimes w_1) = 0$. By the previous claim $V^{(n)} \otimes V^{(1)}$ contains a subrepresentation $W^1 \cong V^{(n+1)}$. Similarly $x \coloneqq v_{n-2} \otimes w_1 - v_n \otimes w_2 \in V^{(n)} \otimes V^{(1)}$ with $e.x = 0$ (here it is used that $e.v_{n-2} = v_n$) and $h.x = (n-1)x$. By the claim $V$ contains another subrepresentation $W^2 \cong V^{(n-1)}$. Because $W^1$ and $W^2$ are irreducible and not equal it follows that $W^1 \cap W^2 = 0$. Because
Let $v_{-n}, v_{-n+2}, \dotsc, v_{n-2}, v_n$ be a basis of $V^{(n)}$ with $v_i \in V_i$ for every $i$ and $e.v_{n-2} = v_n$ (notice that $n \geq m = 1$, so $v_{n-2}$ is well-defined). Similarly and $w_{-1}, w_1$ a basis of $V^{(1)}$ with $w_j \in W_j$ for $j = -1,1$. Then $v_n \otimes w_1 \in V^{(n)} \otimes V^{(1)}$ with $h.(v_n \otimes w_1) = (n+1) v_n \otimes w_1$ and $e.(v_n \otimes w_1) = 0$. By the previous claim $V^{(n)} \otimes V^{(1)}$ contains a subrepresentation $W^1 \cong V^{(n+1)}$. Similarly $x \coloneqq v_{n-2} \otimes w_1 - v_n \otimes w_2 \in V^{(n)} \otimes V^{(1)}$ with $e.x = 0$ (here it is used that $e.v_{n-2} = v_n$) and $h.x = (n-1)x$. By the claim $V$ contains another subrepresentation $W^2 \cong V^{(n-1)}$. Because $W^1$ and $W^2$ are irreducible and not equal it follows that $W^1 \cap W^2 = 0$. Because
\[
\dim W^1 + \dim W^2 = 2n+2 = (\dim V^{(n)})(\dim V^{(1)}) = \dim (V^{(n)} \otimes V^{(1)})
\dim W^1 + \dim W^2 = 2n+2
= \left(\dim V^{(n)}\right) \cdot \left(\dim V^{(1)}\right)
= \dim\left( V^{(n)} \otimes V^{(1)} \right)
\]
it follows that $V = W^1 \oplus W^2 \cong V^{(n+1)} \oplus V^{(n-1)}$. This shows the formula for $m = 1$.

Suppose that the
Suppose that $m \geq 2$ and the statement holds for $0, 1, \dotsc, m-1$. Then on the one hand
\begin{align*}
V^{(n)} \otimes V^{(m-1)} \otimes V^{(1)}
&\cong V^{(n)} \otimes \left( V^{(m)} \oplus V^{(m-2)} \right)
\cong V^{(n)} \otimes V^{(m)} \oplus V^{(n)} \otimes V^{(m-2)} \\
&\cong V^{(n)} \otimes V^{(m)} \oplus \left( V^{(n+m-2)} \oplus V^{(n+m-4} \oplus \dotsb \otimes V^{(n-m+2)} \right)
\end{align*}
while on the other hand
\begin{align*}
&\, V^{(n)} \otimes V^{(m-1)} \otimes V^{(1)} \\
\cong&\, \left( V^{(n+m-1)} \oplus V^{(n+m-3)} \oplus \dotsb \oplus V^{n-m+1} \right) \otimes V^{(1)} \\
\cong&\, \left( V^{(n+m-1)} \otimes V^{(1)} \right)
\oplus \left( V^{(n+m-3)} \otimes V^{(1)} \right)
\oplus \dotsb
\oplus \left( V^{(n-m+1)} \otimes V^{(1)} \right) \\
\cong&\, \left( V^{(n+m)} \oplus V^{(n+m-2)} \right)
\oplus \left( V^{(n+m-2)} \oplus V^{(n+m-4)} \right)
\oplus \dotsb
\oplus \left( V^{(n-m+2)} \oplus V^{(n-m)} \right) \\
\cong&\, \left( V^{(n+m)} \oplus V^{(n+m-2)} \oplus \dotsb \oplus V^{(n-m)} \right) \\
&\, \oplus \left( V^{(n+m-2)} \oplus V^{(n+m-4)} \oplus \dotsb \oplus V^{(n-m+2)} \right).
\end{align*}
By the uniqueness of the decomposition of $V^{(n)} \otimes V^{(m-1)} \otimes V^{(1)}$ into irreducible subrepresentations is follows that
\[
V^{(n)} \otimes V^{(m)} \cong V^{(n+m)} \oplus V^{(n+m-2)} \oplus \dotsb \oplus V^{(n-m)},
\]
which finishes the proof.
\end{proof}


Expand Down

0 comments on commit e71ac1a

Please sign in to comment.