Skip to content

conda-forge/r-pmcmrplus-feedstock

Repository files navigation

About r-pmcmrplus-feedstock

Feedstock license: BSD-3-Clause

About r-pmcmrplus

Home: https://CRAN.R-project.org/package=PMCMRplus

Package license: GPL-3.0-or-later

Summary: For one-way layout experiments the one-way ANOVA can be performed as an omnibus test. All-pairs multiple comparisons tests (Tukey-Kramer test, Scheffe test, LSD-test) and many-to-one tests (Dunnett test) for normally distributed residuals and equal within variance are available. Furthermore, all-pairs tests (Games-Howell test, Tamhane's T2 test, Dunnett T3 test, Ury-Wiggins-Hochberg test) and many-to-one (Tamhane-Dunnett Test) for normally distributed residuals and heterogeneous variances are provided. Van der Waerden's normal scores test for omnibus, all-pairs and many-to-one tests is provided for non-normally distributed residuals and homogeneous variances. The Kruskal-Wallis, BWS and Anderson-Darling omnibus test and all-pairs tests (Nemenyi test, Dunn test, Conover test, Dwass-Steele-Critchlow- Fligner test) as well as many-to-one (Nemenyi test, Dunn test, U-test) are given for the analysis of variance by ranks. Non-parametric trend tests (Jonckheere test, Cuzick test, Johnson-Mehrotra test, Spearman test) are included. In addition, a Friedman-test for one-way ANOVA with repeated measures on ranks (CRBD) and Skillings-Mack test for unbalanced CRBD is provided with consequent all-pairs tests (Nemenyi test, Siegel test, Miller test, Conover test, Exact test) and many-to-one tests (Nemenyi test, Demsar test, Exact test). A trend can be tested with Pages's test. Durbin's test for a two-way balanced incomplete block design (BIBD) is given in this package as well as Gore's test for CRBD with multiple observations per cell is given. Outlier tests, Mandel's k- and h statistic as well as functions for Type I error and Power analysis as well as generic summary, print and plot methods are provided.

About r-pmcmrplus

Home: https://CRAN.R-project.org/package=PMCMRplus

Package license: GPL-3.0-or-later

Summary: For one-way layout experiments the one-way ANOVA can be performed as an omnibus test. All-pairs multiple comparisons tests (Tukey-Kramer test, Scheffe test, LSD-test) and many-to-one tests (Dunnett test) for normally distributed residuals and equal within variance are available. Furthermore, all-pairs tests (Games-Howell test, Tamhane's T2 test, Dunnett T3 test, Ury-Wiggins-Hochberg test) and many-to-one (Tamhane-Dunnett Test) for normally distributed residuals and heterogeneous variances are provided. Van der Waerden's normal scores test for omnibus, all-pairs and many-to-one tests is provided for non-normally distributed residuals and homogeneous variances. The Kruskal-Wallis, BWS and Anderson-Darling omnibus test and all-pairs tests (Nemenyi test, Dunn test, Conover test, Dwass-Steele-Critchlow- Fligner test) as well as many-to-one (Nemenyi test, Dunn test, U-test) are given for the analysis of variance by ranks. Non-parametric trend tests (Jonckheere test, Cuzick test, Johnson-Mehrotra test, Spearman test) are included. In addition, a Friedman-test for one-way ANOVA with repeated measures on ranks (CRBD) and Skillings-Mack test for unbalanced CRBD is provided with consequent all-pairs tests (Nemenyi test, Siegel test, Miller test, Conover test, Exact test) and many-to-one tests (Nemenyi test, Demsar test, Exact test). A trend can be tested with Pages's test. Durbin's test for a two-way balanced incomplete block design (BIBD) is given in this package as well as Gore's test for CRBD with multiple observations per cell is given. Outlier tests, Mandel's k- and h statistic as well as functions for Type I error and Power analysis as well as generic summary, print and plot methods are provided.

Current build status

Travis linux
Azure
VariantStatus
linux_64_r_base4.2 variant
linux_64_r_base4.3 variant
linux_aarch64_r_base4.2 variant
linux_aarch64_r_base4.3 variant
linux_ppc64le_r_base4.2 variant
linux_ppc64le_r_base4.3 variant
osx_64_r_base4.2 variant
osx_64_r_base4.3 variant
win_64 variant

Current release info

Name Downloads Version Platforms
Conda Recipe Conda Downloads Conda Version Conda Platforms

Installing r-pmcmrplus

Installing r-pmcmrplus from the conda-forge channel can be achieved by adding conda-forge to your channels with:

conda config --add channels conda-forge
conda config --set channel_priority strict

Once the conda-forge channel has been enabled, r-pmcmrplus can be installed with conda:

conda install r-pmcmrplus

or with mamba:

mamba install r-pmcmrplus

It is possible to list all of the versions of r-pmcmrplus available on your platform with conda:

conda search r-pmcmrplus --channel conda-forge

or with mamba:

mamba search r-pmcmrplus --channel conda-forge

Alternatively, mamba repoquery may provide more information:

# Search all versions available on your platform:
mamba repoquery search r-pmcmrplus --channel conda-forge

# List packages depending on `r-pmcmrplus`:
mamba repoquery whoneeds r-pmcmrplus --channel conda-forge

# List dependencies of `r-pmcmrplus`:
mamba repoquery depends r-pmcmrplus --channel conda-forge

About conda-forge

Powered by NumFOCUS

conda-forge is a community-led conda channel of installable packages. In order to provide high-quality builds, the process has been automated into the conda-forge GitHub organization. The conda-forge organization contains one repository for each of the installable packages. Such a repository is known as a feedstock.

A feedstock is made up of a conda recipe (the instructions on what and how to build the package) and the necessary configurations for automatic building using freely available continuous integration services. Thanks to the awesome service provided by Azure, GitHub, CircleCI, AppVeyor, Drone, and TravisCI it is possible to build and upload installable packages to the conda-forge anaconda.org channel for Linux, Windows and OSX respectively.

To manage the continuous integration and simplify feedstock maintenance conda-smithy has been developed. Using the conda-forge.yml within this repository, it is possible to re-render all of this feedstock's supporting files (e.g. the CI configuration files) with conda smithy rerender.

For more information please check the conda-forge documentation.

Terminology

feedstock - the conda recipe (raw material), supporting scripts and CI configuration.

conda-smithy - the tool which helps orchestrate the feedstock. Its primary use is in the construction of the CI .yml files and simplify the management of many feedstocks.

conda-forge - the place where the feedstock and smithy live and work to produce the finished article (built conda distributions)

Updating r-pmcmrplus-feedstock

If you would like to improve the r-pmcmrplus recipe or build a new package version, please fork this repository and submit a PR. Upon submission, your changes will be run on the appropriate platforms to give the reviewer an opportunity to confirm that the changes result in a successful build. Once merged, the recipe will be re-built and uploaded automatically to the conda-forge channel, whereupon the built conda packages will be available for everybody to install and use from the conda-forge channel. Note that all branches in the conda-forge/r-pmcmrplus-feedstock are immediately built and any created packages are uploaded, so PRs should be based on branches in forks and branches in the main repository should only be used to build distinct package versions.

In order to produce a uniquely identifiable distribution:

  • If the version of a package is not being increased, please add or increase the build/number.
  • If the version of a package is being increased, please remember to return the build/number back to 0.

Feedstock Maintainers