-
Notifications
You must be signed in to change notification settings - Fork 2
/
isocele.v
225 lines (213 loc) · 7.27 KB
/
isocele.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
From HighSchoolGeometry Require Export mediatrice.
Set Implicit Arguments.
Unset Strict Implicit.
Definition isocele (A B C : PO) : Prop := distance A B = distance A C.
Lemma isocele_permute : forall A B C : PO, isocele A B C -> isocele A C B.
Proof.
unfold isocele in |- *; intros; auto.
Qed.
#[export] Hint Immediate isocele_permute: geo.
Lemma isocele_mediatrice :
forall A B C : PO, isocele A B C -> mediatrice B C A.
Proof.
unfold isocele, mediatrice in |- *; intros; auto.
Qed.
Lemma mediatrice_isocele :
forall A B C : PO, mediatrice B C A -> isocele A B C.
Proof.
unfold isocele, mediatrice in |- *; intros; auto.
Qed.
Lemma mediane_hauteur_isocele :
forall A B C I : PO,
I = milieu B C -> orthogonal (vec B C) (vec I A) -> isocele A B C.
Proof.
intros.
apply mediatrice_isocele.
discrimine B C.
unfold mediatrice in |- *; auto with geo.
apply orthogonale_segment_milieu_mediatrice with I; auto.
Qed.
Lemma mediane_isocele_hauteur :
forall A B C I : PO,
I = milieu B C -> isocele A B C -> orthogonal (vec I A) (vec B C).
Proof.
intros.
discrimine B C.
VReplace (vec C C) zero.
auto with geo.
apply mediatrice_orthogonale_segment; auto.
apply milieu_mediatrice; auto.
Qed.
Lemma hauteur_isocele_mediane :
forall A B C I : PO,
B <> C ->
orthogonal (vec B C) (vec I A) ->
isocele A B C -> alignes B C I -> I = milieu B C.
Proof.
intros A B C I H0 H1 H2 H3; try assumption.
soit_projete B C A H.
apply mediatrice_projete_milieu with A; auto.
rewrite <- H4.
apply unicite_projete_orthogonal with (3 := H1); auto.
Qed.
Lemma isocele_mediane_bissectrice :
forall A B C I : PO,
A <> I ->
B <> C ->
I = milieu B C ->
isocele A B C -> cons_AV (vec A B) (vec A I) = cons_AV (vec A I) (vec A C).
Proof.
intros.
apply mediatrice_milieu_angles; auto.
Qed.
Lemma isocele_angles_base :
forall A B C : PO,
A <> B ->
A <> C ->
B <> C ->
isocele A B C -> cons_AV (vec B C) (vec B A) = cons_AV (vec C A) (vec C B).
Proof.
intros A B C H H0 H1; try assumption.
soit_milieu B C K.
elim (classic (A = K)); intros.
apply permute_angles; auto.
rewrite <- H6 in H5.
rewrite <- H6 in H2.
rewrite <- (angles_milieu (A:=C) (B:=B) (C:=C) (I:=A)); auto.
rewrite <- (angles_milieu2 (A:=B) (B:=B) (C:=C) (I:=A)); auto with geo.
cut (orthogonal (vec B C) (vec K A)); intros.
cut (cons_AV (vec K B) (vec K A) = cons_AV (vec K A) (vec K C)); intros.
cut (cons_AV (vec A B) (vec A K) = cons_AV (vec A K) (vec A C)); intros.
rewrite (angles_milieu (A:=A) (B:=B) (C:=C) (I:=K)); auto.
generalize (somme_triangle (A:=A) (B:=B) (C:=K)); auto; intros.
generalize (somme_triangle (A:=A) (B:=K) (C:=C)); auto; intros.
rewrite (angles_milieu2 (A:=A) (B:=B) (C:=C) (I:=K)); auto.
replace (cons_AV (vec B K) (vec B A)) with
(plus (image_angle pi)
(opp (plus (cons_AV (vec A B) (vec A K)) (cons_AV (vec K A) (vec K B))))).
replace (cons_AV (vec C A) (vec C K)) with
(plus (image_angle pi)
(opp (plus (cons_AV (vec A K) (vec A C)) (cons_AV (vec K C) (vec K A))))).
rewrite H9.
replace (cons_AV (vec K C) (vec K A)) with (cons_AV (vec K A) (vec K B));
auto with geo.
rewrite <- H11; auto.
mesure A K A C.
mesure K C K A.
mesure C A C K.
replace (x + (x0 + x1) + - (x + x0)) with x1; auto.
ring.
rewrite <- H10; auto.
mesure K A K B.
mesure A B A K.
mesure B K B A.
replace (x0 + (x1 + x) + - (x0 + x)) with x1; auto.
ring.
generalize (isocele_mediane_bissectrice (A:=A) (B:=B) (C:=C) (I:=K)); auto;
intros.
generalize (milieu_angles_orthogonaux (A:=B) (B:=C) (M:=K) (N:=A)); auto;
intros.
generalize (mediane_isocele_hauteur (A:=A) (B:=B) (C:=C) (I:=K));
auto with geo; intros.
Qed.
Lemma diametre_rectangle :
forall A B C C' : PO,
A <> B ->
C' = milieu A B ->
distance C' C = distance C' A -> orthogonal (vec C A) (vec C B).
Proof.
intros.
discrimine C A.
apply ortho_sym.
replace (vec A A) with zero.
apply zero_ortho_tout.
Ringvec.
discrimine C B.
replace (vec B B) with zero.
apply zero_ortho_tout.
Ringvec.
cut (B <> C'); intros.
cut (A <> C'); intros.
cut (C <> C'); intros.
apply angles_orthogonal; auto.
cut (isocele C' C A); intros.
cut (isocele C' B C); intros.
generalize (isocele_angles_base (A:=C') (B:=C) (C:=A)); auto; intros.
generalize (isocele_angles_base (A:=C') (B:=B) (C:=C)); auto; intros.
generalize (somme_triangle (A:=C') (B:=C) (C:=A)); intros.
generalize (somme_triangle (A:=C') (B:=B) (C:=C)); intros.
replace (double_AV (cons_AV (vec C A) (vec C B))) with
(plus (double_AV (cons_AV (vec C A) (vec C C')))
(double_AV (cons_AV (vec C C') (vec C B)))).
replace (double_AV (cons_AV (vec C A) (vec C C'))) with
(plus (cons_AV (vec C A) (vec C C')) (cons_AV (vec A C') (vec A C))).
replace (double_AV (cons_AV (vec C C') (vec C B))) with
(plus (cons_AV (vec B C) (vec B C')) (cons_AV (vec C C') (vec C B))).
replace (plus (cons_AV (vec B C) (vec B C')) (cons_AV (vec C C') (vec C B)))
with (plus (image_angle pi) (opp (cons_AV (vec C' B) (vec C' C)))).
replace (plus (cons_AV (vec C A) (vec C C')) (cons_AV (vec A C') (vec A C)))
with (plus (image_angle pi) (opp (cons_AV (vec C' C) (vec C' A)))).
rewrite def_opp; auto.
rewrite def_opp; auto.
mesure C' A C' C.
mesure C' C C' B.
replace (pi + x + (pi + x0)) with (pi + pi + (x + x0)).
replace (pi + pi) with deuxpi; auto.
rewrite add_mes_compatible; rewrite pi_plus_pi; rewrite <- add_mes_compatible.
replace (0 + (x + x0)) with (x + x0); auto.
rewrite add_mes_compatible.
rewrite H14; rewrite H13.
replace
(plus (cons_AV (vec C' A) (vec C' C)) (cons_AV (vec C' C) (vec C' B))) with
(cons_AV (vec C' A) (vec C' B)).
rewrite <- (milieu_vecteur (A:=A) (B:=B) (M:=C')); auto.
rewrite <- angle_plat; auto.
rewrite Chasles; auto.
ring.
ring.
rewrite <- H11; auto.
rewrite <- H9; auto.
mesure C' C C' A.
mesure C A C C'.
replace (x + (x0 + x0) + - x) with (x0 + x0); auto.
ring.
rewrite <- H12; auto.
rewrite <- H10; auto.
mesure C' B C' C.
mesure B C B C'.
replace (x + (x0 + x0) + - x) with (x0 + x0); auto.
ring.
rewrite H10; auto.
rewrite H9; auto.
rewrite double_Chasles; auto.
unfold isocele in |- *.
rewrite H1.
apply carre_scalaire_egalite_distance.
rewrite <- (milieu_vecteur (A:=A) (B:=B) (M:=C')); auto.
replace (vec A C') with (mult_PP (-1) (vec C' A)); auto.
Simplscal.
Ringvec.
unfold isocele in |- *.
rewrite H1; auto.
apply isometrie_distinct with (1 := H5).
rewrite distance_sym.
rewrite <- H1; rewrite distance_sym; auto.
rewrite H0.
apply milieu_distinct; auto.
rewrite H0.
apply milieu_distinct2; auto.
Qed.