Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Factor out numbertheory. #62

Merged
merged 1 commit into from Jul 22, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Jump to
Jump to file
Failed to load files.
Diff view
Diff view
100 changes: 100 additions & 0 deletions example/factorout.go
@@ -0,0 +1,100 @@
package main

import (
"fmt"
"bytes"
"flag"
"strings"
"regexp"
"log"
"github.com/corywalker/expreduce/expreduce"
)

var modules = flag.String("modules", "",
"A regexp of modules to include, otherwise include all modules.")

func main() {
flag.Parse()
//es := expreduce.NewEvalState()
var ModEx = regexp.MustCompile(*modules)
for _, defSet := range expreduce.GetAllDefinitions() {
if !ModEx.MatchString(defSet.Name) {
continue
}
var b bytes.Buffer
for _, def := range defSet.Defs {
if def.Bootstrap {
continue
}
if def.Usage != "" {
b.WriteString(fmt.Sprintf("%s::usage = \"%v\";\n", def.Name, def.Usage))
for _, r := range def.Rules {
b.WriteString(fmt.Sprintf("%v := %v;\n", r.Lhs, r.Rhs))
}
b.WriteString(fmt.Sprintf("Attributes[%v] = {", def.Name))
for _, a := range def.Attributes {
b.WriteString(fmt.Sprintf("%s, ", a))
}
b.WriteString(fmt.Sprintf("Protected};\n"))
var tests bytes.Buffer
hasTests := false
tests.WriteString(fmt.Sprintf("Tests`%v = {\n\t", def.Name))
testCols := [][]expreduce.TestInstruction{
def.SimpleExamples,
def.FurtherExamples,
def.Tests,
def.KnownFailures,
def.KnownDangerous,
}
testColNames := []string{
"ESimpleExamples",
"EFurtherExamples",
"ETests",
"EKnownFailures",
"EKnownDangerous",
}
for i, testCol := range testCols {
if len(testCol) > 0 {
//fmt.Println(testCol, testColNames[i])
if hasTests {
tests.WriteString(fmt.Sprintf(", %v[\n", testColNames[i]))
} else {
tests.WriteString(fmt.Sprintf("%v[\n", testColNames[i]))
}
for ti, t := range testCol {
tests.WriteString(fmt.Sprintf("\t\t"))
if tSame, tIsSame := t.(*expreduce.SameTest); tIsSame {
tests.WriteString(fmt.Sprintf("ESameTest[%v, %v]", tSame.Out, tSame.In))
} else if tComment, tIsComment := t.(*expreduce.TestComment); tIsComment {
tests.WriteString(fmt.Sprintf("EComment[\"%v\"]", tComment.Comment))
} else if tString, tIsString := t.(*expreduce.StringTest); tIsString {
tests.WriteString(fmt.Sprintf("EStringTest[\"%v\", \"%v\"]", tString.Out, tString.In))
} else if tDiff, tIsDiff := t.(*expreduce.DiffTest); tIsDiff {
tests.WriteString(fmt.Sprintf("EDiffTest[%v, %v]", tDiff.Out, tDiff.In))
} else if tExampleOnly, tIsExampleOnly := t.(*expreduce.ExampleOnlyInstruction); tIsExampleOnly {
tests.WriteString(fmt.Sprintf("EExampleOnlyInstruction[\"%v\", \"%v\"]", tExampleOnly.Out, tExampleOnly.In))
} else if _, tIsResetState := t.(*expreduce.ResetState); tIsResetState {
tests.WriteString(fmt.Sprintf("EResetState[]"))
} else {
tests.WriteString(fmt.Sprintf("%v", t))
log.Fatalf("%v %v %v", t, defSet.Name, def.Name)
}
if ti != len(testCol)-1 {
tests.WriteString(fmt.Sprintf(","))
}
tests.WriteString(fmt.Sprintf("\n"))
}
tests.WriteString(fmt.Sprintf("\t]"))
hasTests = true
}
}
tests.WriteString(fmt.Sprintf("\n};"))
if hasTests {
b.WriteString(fmt.Sprintf("%v\n", tests.String()))
}
b.WriteString(fmt.Sprintf("\n"))
}
}
fmt.Printf("%s\n", strings.Replace(b.String(), "\t", " ", -1))
}
}
98 changes: 1 addition & 97 deletions expreduce/builtin_numbertheory.go
Expand Up @@ -5,30 +5,10 @@ import "math/big"
func GetNumberTheoryDefinitions() (defs []Definition) {
defs = append(defs, Definition{
Name: "PrimeQ",
Usage: "`PrimeQ[n]` returns True if `n` is prime, False otherwise.",
Attributes: []string{"Listable"},
legacyEvalFn: singleParamQEval(primeQ),
SimpleExamples: []TestInstruction{
&SameTest{"True", "PrimeQ[5]"},
&SameTest{"False", "PrimeQ[100]"},
&SameTest{"True", "PrimeQ[982451653]"},
&SameTest{"True", "PrimeQ[-2]"},
},
FurtherExamples: []TestInstruction{
&TestComment{"`PrimeQ` only works for Integers:"},
&SameTest{"False", "PrimeQ[5.]"},
},
Tests: []TestInstruction{
&SameTest{"False", "PrimeQ[0]"},
&SameTest{"False", "PrimeQ[1]"},
&SameTest{"False", "PrimeQ[-1]"},
&SameTest{"False", "PrimeQ[0.5]"},
},
})
defs = append(defs, Definition{
Name: "GCD",
Usage: "`GCD[n1, n2, ...]` finds the greatest common denominator of the integer inputs.",
Attributes: []string{"Flat", "Listable", "OneIdentity", "Orderless"},
legacyEvalFn: func(this *Expression, es *EvalState) Ex {
zero := big.NewInt(0)
var ints [](*big.Int)
Expand Down Expand Up @@ -58,70 +38,10 @@ func GetNumberTheoryDefinitions() (defs []Definition) {
}
return &Integer{gcd}
},
SimpleExamples: []TestInstruction{
&SameTest{"3", "GCD[9, 6]"},
&SameTest{"5", "GCD[100, 30, 15]"},
},
Tests: []TestInstruction{
&SameTest{"1", "GCD[9, 2]"},
&SameTest{"10", "GCD[100, 0, 10]"},
&SameTest{"3", "GCD[9, 3]"},
&SameTest{"10", "GCD[100, 30, 10]"},
&SameTest{"10", "GCD[100, 30]"},
&SameTest{"1", "GCD[100, 30, -1]"},
&SameTest{"10", "GCD[100, 30, -60]"},
&SameTest{"60", "GCD[-60, -60, -60]"},
&SameTest{"GCD[-60, -60, -0.5]", "GCD[-60, -60, -0.5]"},
&SameTest{"GCD[0.5]", "GCD[0.5]"},
&SameTest{"GCD[1, a]", "GCD[1, a]"},
&SameTest{"GCD[a, a]", "GCD[a, a]"},
&SameTest{"0", "GCD[]"},
&SameTest{"1", "GCD[1]"},
&SameTest{"GCD[a]", "GCD[a]"},
&SameTest{"1000", "GCD[1000]"},
&SameTest{"5", "GCD[5, 15]"},
&SameTest{"5", "GCD[5, 15, 30]"},
&SameTest{"5", "GCD[10, 20, 25]"},
&SameTest{"1", "GCD[5, 14]"},
&SameTest{"5/2", "GCD[5/2, 15/2]"},
&SameTest{"5/3", "GCD[5/3, 5]"},
&SameTest{"GCD[5/3,a]", "GCD[5/3, a]"},
&SameTest{"GCD[a,b,c]", "GCD[a, b, c]"},
&SameTest{"0", "GCD[0]"},
&SameTest{"0", "GCD[0, 0]"},
&SameTest{"99", "GCD[-99]"},
&SameTest{"5/2", "GCD[-5/2]"},
&SameTest{"5", "GCD[10, -20, 25]"},
&SameTest{"1", "GCD[5, -14]"},
&SameTest{"5/2", "GCD[5/2, -15/2]"},
&SameTest{"5/2", "GCD[5/2, -15/2, -15/2]"},
&SameTest{"5/3", "GCD[-5/3, -5]"},
&SameTest{"5/3", "GCD[-5/3, -5]"},
&SameTest{"GCD[-(5/3),a]", "GCD[-5/3, a]"},
},
})
defs = append(defs, Definition{
Name: "LCM",
Usage: "`LCM[n1, n2, ...]` finds the least common multiple of the inputs.",
SimpleExamples: []TestInstruction{
&SameTest{"70", "LCM[5, 14]"},
&SameTest{"2380", "LCM[5, 14, 68]"},
&SameTest{"2/3", "LCM[2/3, 1/3]"},
&SameTest{"10/3", "LCM[2/3, 1/3, 5/6]"},
&SameTest{"30", "LCM[2/3, 1/3, 5/6, 3]"},
&SameTest{"{2/3,10/3,6}", "LCM[2/3, {1/3, 5/6, 3}]"},
},
Tests: []TestInstruction{
&SameTest{"{10/3,10/3,30}", "LCM[2/3, {1/3, 5/6, 3}, 5/6]"},
&SameTest{"LCM[a,b]", "LCM[a, b]"},
&SameTest{"LCM[a,b,c]", "LCM[a, b, c]"},
&SameTest{"LCM[5,6,c]", "LCM[5, 6, c]"},
},
})
defs = append(defs, Definition{Name: "LCM"})
defs = append(defs, Definition{
Name: "Mod",
Usage: "`Mod[x, y]` finds the remainder when `x` is divided by `y`.",
Attributes: []string{"Listable", "NumericFunction", "ReadProtected"},
legacyEvalFn: func(this *Expression, es *EvalState) Ex {
if len(this.Parts) != 3 {
return this
Expand All @@ -138,22 +58,6 @@ func GetNumberTheoryDefinitions() (defs []Definition) {
m.Mod(xi.Val, yi.Val)
return &Integer{m}
},
SimpleExamples: []TestInstruction{
&SameTest{"2", "Mod[5,3]"},
&SameTest{"0", "Mod[0,3]"},
&SameTest{"Indeterminate", "Mod[2,0]"},
},
Tests: []TestInstruction{
&SameTest{"1", "Mod[-5,3]"},
&SameTest{"Mod[a,3]", "Mod[a,3]"},
&SameTest{"Indeterminate", "Mod[0,0]"},
&SameTest{"Mod[2,a]", "Mod[2,a]"},
&SameTest{"Mod[0,a]", "Mod[0,a]"},
},
KnownFailures: []TestInstruction{
&SameTest{"1.5", "Mod[1.5,3]"},
&SameTest{"0.", "Mod[2,0.5]"},
},
})
defs = append(defs, Definition{Name: "EvenQ"})
defs = append(defs, Definition{Name: "OddQ"})
Expand Down
98 changes: 98 additions & 0 deletions expreduce/resources/numbertheory.m
@@ -1,15 +1,113 @@
PrimeQ::usage = "`PrimeQ[n]` returns True if `n` is prime, False otherwise.";
Attributes[PrimeQ] = {Listable, Protected};
Tests`PrimeQ = {
ESimpleExamples[
ESameTest[True, PrimeQ[5]],
ESameTest[False, PrimeQ[100]],
ESameTest[True, PrimeQ[982451653]],
ESameTest[True, PrimeQ[-2]]
], EFurtherExamples[
EComment["`PrimeQ` only works for Integers:"],
ESameTest[False, PrimeQ[5.]]
], ETests[
ESameTest[False, PrimeQ[0]],
ESameTest[False, PrimeQ[1]],
ESameTest[False, PrimeQ[-1]],
ESameTest[False, PrimeQ[0.5]]
]
};

GCD::usage = "`GCD[n1, n2, ...]` finds the greatest common denominator of the integer inputs.";
(* Eventually we should not need the rest___ term. GCD is Flat. *)
GCD[Rational[a_, b_], Rational[c_, d_], rest___] :=
GCD[GCD[a*d, c*b]/(b*d), rest];
GCD[Rational[a_, b_], c_Integer, rest___] :=
GCD[GCD[a, c*b]/b, rest];
(*This deviates from how it should be done*)
GCD[a_Rational] := Abs[a];
Attributes[GCD] = {Flat, Listable, OneIdentity, Orderless, Protected};
Tests`GCD = {
ESimpleExamples[
ESameTest[3, GCD[9, 6]],
ESameTest[5, GCD[100, 30, 15]]
], ETests[
ESameTest[1, GCD[9, 2]],
ESameTest[10, GCD[100, 0, 10]],
ESameTest[3, GCD[9, 3]],
ESameTest[10, GCD[100, 30, 10]],
ESameTest[10, GCD[100, 30]],
ESameTest[1, GCD[100, 30, -1]],
ESameTest[10, GCD[100, 30, -60]],
ESameTest[60, GCD[-60, -60, -60]],
ESameTest[GCD[-60, -60, -0.5], GCD[-60, -60, -0.5]],
ESameTest[GCD[0.5], GCD[0.5]],
ESameTest[GCD[1, a], GCD[1, a]],
ESameTest[GCD[a, a], GCD[a, a]],
ESameTest[0, GCD[]],
ESameTest[1, GCD[1]],
ESameTest[GCD[a], GCD[a]],
ESameTest[1000, GCD[1000]],
ESameTest[5, GCD[5, 15]],
ESameTest[5, GCD[5, 15, 30]],
ESameTest[5, GCD[10, 20, 25]],
ESameTest[1, GCD[5, 14]],
ESameTest[5/2, GCD[5/2, 15/2]],
ESameTest[5/3, GCD[5/3, 5]],
ESameTest[GCD[5/3,a], GCD[5/3, a]],
ESameTest[GCD[a,b,c], GCD[a, b, c]],
ESameTest[0, GCD[0]],
ESameTest[0, GCD[0, 0]],
ESameTest[99, GCD[-99]],
ESameTest[5/2, GCD[-5/2]],
ESameTest[5, GCD[10, -20, 25]],
ESameTest[1, GCD[5, -14]],
ESameTest[5/2, GCD[5/2, -15/2]],
ESameTest[5/2, GCD[5/2, -15/2, -15/2]],
ESameTest[5/3, GCD[-5/3, -5]],
ESameTest[5/3, GCD[-5/3, -5]],
ESameTest[GCD[-(5/3),a], GCD[-5/3, a]]
]
};

LCM::usage = "`LCM[n1, n2, ...]` finds the least common multiple of the inputs.";
LCM[a_?NumberQ, b_?NumberQ] := (a/GCD[a, b])*b;
LCM[a_?NumberQ, b_?NumberQ, rest__?NumberQ] :=
LCM[LCM[a, b], rest];
Attributes[LCM]={Flat,Listable,OneIdentity,Orderless,Protected};
Tests`LCM = {
ESimpleExamples[
ESameTest[70, LCM[5, 14]],
ESameTest[2380, LCM[5, 14, 68]],
ESameTest[2/3, LCM[2/3, 1/3]],
ESameTest[10/3, LCM[2/3, 1/3, 5/6]],
ESameTest[30, LCM[2/3, 1/3, 5/6, 3]],
ESameTest[{2/3,10/3,6}, LCM[2/3, {1/3, 5/6, 3}]]
], ETests[
ESameTest[{10/3,10/3,30}, LCM[2/3, {1/3, 5/6, 3}, 5/6]],
ESameTest[LCM[a,b], LCM[a, b]],
ESameTest[LCM[a,b,c], LCM[a, b, c]],
ESameTest[LCM[5,6,c], LCM[5, 6, c]]
]
};

Mod::usage = "`Mod[x, y]` finds the remainder when `x` is divided by `y`.";
Attributes[Mod] = {Listable, NumericFunction, ReadProtected, Protected};
Tests`Mod = {
ESimpleExamples[
ESameTest[2, Mod[5,3]],
ESameTest[0, Mod[0,3]],
ESameTest[Indeterminate, Mod[2,0]]
], ETests[
ESameTest[1, Mod[-5,3]],
ESameTest[Mod[a,3], Mod[a,3]],
ESameTest[Indeterminate, Mod[0,0]],
ESameTest[Mod[2,a], Mod[2,a]],
ESameTest[Mod[0,a], Mod[0,a]]
], EKnownFailures[
ESameTest[1.5, Mod[1.5,3]],
ESameTest[0., Mod[2,0.5]]
]
};

EvenQ::usage = "`EvenQ[n]` returns True if `n` is an even integer.";
EvenQ[n_Integer] := Mod[n,2]===0;
Expand Down