MCMCprecision: Precision for discrete parameters in transdimensional MCMC
The R package MCMCprecision
estimates the precision of the posterior model
probabilities in transdimensional Markov chain Monte Carlo methods (e.g.,
reversible jump MCMC or product-space MCMC). This is useful for applications of
transdimensional MCMC such as model selection, mixtures with varying numbers of
components, change-point detection, capture-recapture models, phylogenetic trees,
variable selection, and for discrete parameters in MCMC output in general.
To install MCMCprecision
from GitHub, paste the following code to R
(dependencies need to be installed manually):
### Dependencies:
# install.packages(c("combinat", "devtools","RcppProgress","RcppArmadillo", "RcppEigen"))
library(devtools)
install_github("danheck/MCMCprecision")
To compile C++ code, Windows requires Rtools
and Mac Xcode Command Line Tools, respectively. Moreover, on Mac, it might be necessary to install the library gfortran
manually by typing the following into the console (required to compile the package RcppArmadillo
):
curl -O http://r.research.att.com/libs/gfortran-4.8.2-darwin13.tar.bz2
sudo tar fvxz gfortran-4.8.2-darwin13.tar.bz2 -C /
Reference
- Heck, D. W., Overstall, A. M., Gronau, Q. F., & Wagenmakers, E.-J. (2017). Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models. Statistics & Computing. doi:10.1007/s11222-018-9828-0 arxiv:1703.10364