Skip to content

davidbakker123/communication.qkd_key_rate

 
 

Repository files navigation

TNO-Quantum: QKD key-rate

TNO Quantum provides generic software components aimed at facilitating the development of quantum applications.

The tno.quantum.communication.qkd_key_rate package provides python code to compute optimal protocol parameters for different quantum key distribution (QKD) protocols.

The codebase is based on the following papers:

The following quantum protocols are supported:

  • BB84 protocol,
  • BB84 protocol using a single photon source,
  • BBM92 protocol.

The following classical error-correction protocols are supported:

  • Cascade,
  • Winnow.

The presented code can be used to

  • determine optimal parameter settings needed to obtain the maximum key rate,
  • correct errors in exchanged sifted keys for the different QKD protocols,
  • apply privacy amplification by calculating secure key using hash function.

Limitations in (end-)use: the content of this software package may solely be used for applications that comply with international export control laws.

Documentation

Documentation of the tno.quantum.communication.qkd_key_rate package can be found here

Install

Easily install the tno.quantum.communication.qkd_key_rate package using pip:

$ python -m pip install tno.quantum.communication.qkd_key_rate

If you wish to run the tests you can use:

$ python -m pip install tno.quantum.communication.qkd_key_rate[tests]

Usage

Compute secure key-rate. The following code demonstrates how the BB84 protocol can be used to calculate optimal key-rate for a specific detector.
from tno.quantum.communication.qkd_key_rate.protocols.quantum.bb84 import (
   BB84FullyAsymptoticKeyRateEstimate,
)
from tno.quantum.communication.qkd_key_rate.test.conftest import standard_detector

detector = standard_detector.customise(
    dark_count_rate=6e-7,
    polarization_drift=0.0707,
    error_detector=5e-3,
    efficiency_detector=0.1,
)

fully_asymptotic_key_rate = BB84FullyAsymptoticKeyRateEstimate(detector=detector)
mu, rate = fully_asymptotic_key_rate.optimize_rate(attenuation=0.2)
Correct errors. The following example demonstrates usage of the Winnow error correction protocol.
import numpy as np

from tno.quantum.communication.qkd_key_rate.base import Message, Permutations, Schedule
from tno.quantum.communication.qkd_key_rate.protocols.classical.winnow import (
   WinnowCorrector,
   WinnowReceiver,
   WinnowSender,
)

error_rate = 0.05
message_length = 10000
input_message = Message.random_message(message_length=message_length)
error_message = Message(
   [x if np.random.rand() > error_rate else 1 - x for x in input_message]
)
schedule = Schedule.schedule_from_error_rate(error_rate=error_rate)
number_of_passes = np.sum(schedule.schedule)
permutations = Permutations.random_permutation(
   number_of_passes=number_of_passes, message_size=message_length
)

alice = WinnowSender(
   message=input_message, permutations=permutations, schedule=schedule
)
bob = WinnowReceiver(
   message=error_message, permutations=permutations, schedule=schedule
)
corrector = WinnowCorrector(alice=alice, bob=bob)
summary = corrector.correct_errors()

Examples

The examples repository contain more elaborate examples that demonstrate possible usage

  • How to compute the secure key-rate for various protocols as function of the loss. BB84 protocols

  • How to compute secure key-rate using the finite key-rate protocol for different number of pulses. Example image

About

Python code to compute optimal protocol parameters for different QKD protocols.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%