Skip to content

davitshahnazaryan3/XGB-rhomut

Repository files navigation

DOI

XGBoost - $\rho-\mu-T$

Next-generation non-linear and collapse prediction models for short to long period systems via machine learning methods

The machine learning approach: Exterme Gradient Boosting (XGBoost)

Makes predictions for a strength ratio - ductility - period relationships

Key arguments:

  • $R$ - strength ratio based on spectral acceleration
  • $\rho$ - strength ratio based on average spectral acceleration
  • $\mu$ - ductility
  • $T$ - period

$$ R=\frac{Sa(T)}{Sa_y} $$

$$ \rho_2=\frac{Sa_{avg,2}(T)}{Sa_y} $$

$$ \rho_3=\frac{Sa_{avg,3}(T)}{Sa_y} $$

where

  • $Sa(T)$ stands for spectral acceleration at fundamental period
  • $Sa_y$ stands for spectral acceleration at yield
  • $Sa_{avg,2}(T)$ stands for average spectral acceleration computed at periods $∈ [0.2T:2T]$
  • $Sa_{avg,3}(T)$ stands for average spectral acceleration computed at periods $∈ [0.2T:3T]$

Installation

pip install xgb-rhomut

Example prediction

Example 1: Dynamic strength ratio prediction of non-collapse scenarios at a dynamic ductility level of 3.0:

import xgbrhomut
model = xgbrhomut.XGBPredict(im_type="sa_avg", collapse=False)
prediction = model.make_prediction(
  period=1, 
  damping=0.05, 
  hardening_ratio=0.02, 
  ductility=4, 
  dynamic_ductility=3.0
)

Example 2: Dynamic ductility prediction given a strength ratio of 3.0 (since im_type is "sa_avg", and collapse is False, \rho_2 is being estimated):

import xgbrhomut
model = xgbrhomut.XGBPredict(im_type="sa_avg", collapse=False)
prediction = model.make_prediction(
  period=1, 
  damping=0.05, 
  hardening_ratio=0.02, 
  ductility=4, 
  strength_ratio=3.0
)

prediction:

{
  "median": float,
  "dispersion": float
}

Other methods

xgbrhomut.r_mu_t.ec8.strength_ratio(mu=3, T=1, Tc=0.5)

Limitations

Limitations in terms of input parameters are:

  • $T$ ∈ [0.01, 3.0] seconds
  • $\mu$ ∈ [2.0, 8.0]
  • $\xi$ ∈ [2.0, 20.0] %
  • $a_h$ ∈ [2.0, 7.0] %
  • $a_c$ ∈ [-30.0, -100.0] %
  • $R$ ∈ [0.5, 10.0]

where

  • $T$ stands for period
  • $\mu$ stands for ductility
  • $\xi$ stands for damping
  • $a_h$ stands for hardening ratio
  • $a_c$ stands for softening ratio (necessary to compute fracturing ductility, where collapse is assumed)

Predictions made using the non-linear analysis resutls of 7292 unique SDOF systems amounting in total to 26,000,000 observations (collapse + non-collapse).


References

  • Shahnazaryan D., O'Reilly J.G., 2023, Next-generation non-linear and collapse prediction models for short to long period systems via machine learning methods, Under Review

About

Next-generation non-linear and collapse prediction models for short to long period systems via machine learning methods

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages