Skip to content

Latest commit

 

History

History
205 lines (151 loc) · 6.78 KB

shape_symmetry.rst

File metadata and controls

205 lines (151 loc) · 6.78 KB

Shape and symmetry

The last two sections showed how to model shape and symmetry individually, but we can be more creative and combine the two.

.. only:: html

    :nbexport:`Download this page as a Jupyter notebook <self>`


Nanoribbons

To create a graphene nanoribbon, we'll need a shape to give the finite width of the ribbon while the infinite length is achieved by imposing translational symmetry.

.. plot::
    :context: reset
    :alt: Zigzag graphene nanoribbon

    from pybinding.repository import graphene

    model = pb.Model(
        graphene.monolayer(),
        pb.rectangle(1.2),  # nm
        pb.translational_symmetry(a1=True, a2=False)
    )
    model.plot()
    model.lattice.plot_vectors(position=[-0.6, 0.3])  # nm

As before, the central darker circles represent the main cell of the nanoribbon, the lighter colored circles are the translations due to symmetry and the red lines are boundary hoppings. The two arrows in the upper left corner show the primitive lattice vectors of graphene.

The :func:`.translational_symmetry` is applied only in the a_1 lattice vector direction which gives the ribbon its infinite length, but the symmetry is disabled in the a_2 direction so that the finite size of the shape is preserved. The builtin :func:`.rectangle` shape gives the nanoribbon its 1.2 nm width.

The band structure calculations work just as before.

.. plot::
    :context: close-figs
    :alt: Zigzag graphene nanoribbon band structure

    from math import pi, sqrt

    solver = pb.solver.lapack(model)
    a = graphene.a_cc * sqrt(3)  # ribbon unit cell length
    bands = solver.calc_bands(-pi/a, pi/a)
    bands.plot()


This is the characteristic band structure for zigzag nanoribbons with zero-energy edge states. If we change the direction of the translational symmetry to a_2, the orientation will change, but we will still have a zigzag nanoribbon.

.. plot::
    :context: close-figs
    :alt: Zigzag graphene nanoribbon along different lattice vector direction

    model = pb.Model(
        graphene.monolayer(),
        pb.rectangle(1.2),  # nm
        pb.translational_symmetry(a1=False, a2=True)
    )
    model.plot()
    model.lattice.plot_vectors(position=[0.6, -0.25])  # nm

Because of the nature of graphene's 2-atom unit cell and lattice vector, only zigzag edges can be created. In order to create armchair edges, we must introduce a different unit cell with 4 atoms.

.. plot::
    :context: close-figs
    :alt: Graphene lattice with 4-atom unit cell

    model = pb.Model(graphene.monolayer_4atom())
    model.plot()
    model.lattice.plot_vectors(position=[-0.13, -0.13])

Note that the lattice vectors a_1 and a_2 are at a right angle, unlike the sharp angle of the base 2-atom cell. The lattice properties are identical for the 2 and 4 atom cells, but the new geometry helps to create armchair edges.

.. plot::
    :context: close-figs
    :alt: Armchair graphene nanoribbon

    model = pb.Model(
        graphene.monolayer_4atom(),
        pb.primitive(a1=5),
        pb.translational_symmetry(a1=False, a2=True)
    )
    model.plot()
    model.lattice.plot_vectors(position=[-0.59, -0.6])

To calculate the band structure we must enter at least two points in k-space between which the energy will be calculated. Note that because the periodicity is in the direction of the second lattice vector a_2, the points in k-space are given as [0, pi/d] instead of just pi/d (which would be equivalent to [pi/d, 0]).

.. plot::
    :context: close-figs
    :alt: Armchair graphene nanoribbon band structure

    solver = pb.solver.lapack(model)
    d = 3 * graphene.a_cc  # ribbon unit cell length
    bands = solver.calc_bands([0, -pi/d], [0, pi/d])
    bands.plot(point_labels=['$-\pi / 3 a_{cc}$', '$\pi / 3 a_{cc}$'])


Complex structures

Up to now, we used :func:`.translational_symmetry` with True or False parameters to enable or disable periodicity in certain directions. We can also pass a number to indicate the desired period length.

.. plot::
    :context: close-figs
    :alt: Zigzag graphene nanoribbon supercell

    model = pb.Model(
        graphene.monolayer_4atom(),
        pb.rectangle(x=2, y=2),
        pb.translational_symmetry(a1=1.2, a2=False)
    )
    model.plot()

The period length is given in nanometers. Note that our base shape is a square with 2 nm sides. The base shape forms the supercell of the periodic structure, but because the period length (1.2 nm) is smaller than the shape (2 nm), the extra length is cut off by the periodic boundary.

If you specify a periodic length which is larger than the base shape, the periodic conditions will not be applied because the periodic boundary will not have anything to bind to.

.. plot::
    :context: close-figs

    model = pb.Model(
        graphene.monolayer_4atom(),
        pb.rectangle(x=1.5, y=1.5),  # don't combine a small shape
        pb.translational_symmetry(a1=1.7, a2=False)  # with large period length
    )
    model.plot()

As you can see, making the period larger than the shape (1.7 nm vs. 1.5 nm), results in just the finite-sized part of the system. Don't do this.

The combination of shape and symmetry can be more complex as shown here with a nanoribbon ring structure.

.. plot::
    :context: close-figs
    :alt: Graphene nanoribbon made up of rings

    def ring(inner_radius, outer_radius):
        """Ring shape defined by an inner and outer radius"""
        def contains(x, y, z):
            r = np.sqrt(x**2 + y**2)
            return np.logical_and(inner_radius < r, r < outer_radius)
        return pb.FreeformShape(contains, width=[2*outer_radius, 2*outer_radius])

    model = pb.Model(
        graphene.monolayer_4atom(),
        ring(inner_radius=1.4, outer_radius=2),
        pb.translational_symmetry(a1=3.8, a2=False)
    )
    plt.figure(figsize=[8, 3])
    model.plot()

The period length of the translation in the a_1 direction is set to 3.8 nm. This ensures that the inner ring shape is preserved and the periodic boundaries are placed on the outer edges.

.. plot::
    :context: close-figs
    :alt: Graphene ring nanoribbon band structure

    solver = pb.solver.arpack(model, k=10) # only the 10 lowest states
    a = 3.8  # [nm] unit cell length
    bands = solver.calc_bands(-pi/a, pi/a)
    bands.plot(point_labels=['$-\pi / a$', '$\pi / a$'])


Example

Note the zero-energy mode in the band structure. For wave vector k = 0, states on the outer edge of the ring have the highest LDOS intensity, but for k = \pi / a the inner edge states dominate.

.. only:: html

    :download:`Download source code </tutorial/shape_symmetry_example.py>`

.. plot:: tutorial/shape_symmetry_example.py
    :include-source: