Permalink
Cannot retrieve contributors at this time
Join GitHub today
GitHub is home to over 40 million developers working together to host and review code, manage projects, and build software together.
Sign up
Fetching contributors…

{-# OPTIONS --type-in-type --without-K #-} | |
open import lib.Prelude | |
import homotopy.FreudenthalIteratedSuspension1 | |
open import homotopy.Pi1S1 | |
open import homotopy.HStructure | |
open import homotopy.Pi2HSusp | |
open import homotopy.PiLessOfConnected | |
open Int | |
open Truncation | |
open LoopSpace | |
open Suspension | |
module homotopy.PiSNSusp where | |
open NSphereSusp | |
H-S¹ : H-Structure S¹.S¹ S¹.base | |
H-S¹ = record { _⊙_ = mult; | |
unitl = λ _ → id; | |
unitr = S¹.S¹-elim _ id ((((!-inv-r S¹.loop ∘ ap (λ x → S¹.loop ∘ ! x) red) ∘ | |
ap (λ x → x ∘ ! (ap (λ z → mult z S¹.base) S¹.loop)) | |
(ap-id S¹.loop)) ∘ | |
ap (λ x → ap (λ x' → x') S¹.loop ∘ x) | |
(∘-unit-l (! (ap (λ z → mult z S¹.base) S¹.loop)))) ∘ transport-Path (λ z → mult z S¹.base) (λ z → z) S¹.loop id); | |
unitcoh = id; | |
isequivl = S¹.S¹-elim _ (snd id-equiv) (HProp-unique (IsEquiv-HProp (λ x → x)) _ _) } where | |
mutual | |
mult : S¹.S¹ -> S¹.S¹ -> S¹.S¹ | |
mult = S¹.S¹-rec (λ x → x) mult-loop | |
mult-hom = (S¹.S¹-elim _ S¹.loop ((!-inv-r-back S¹.loop S¹.loop ∘ ap (λ x → x ∘ S¹.loop ∘ ! x) (ap-id S¹.loop)) ∘ transport-Path (λ x → x) (λ x → x) S¹.loop S¹.loop)) | |
mult-loop = (λ≃ mult-hom) | |
red : (ap (λ z → mult z S¹.base) S¹.loop) ≃ S¹.loop | |
red = ((Π≃β mult-hom {S¹.base}) ∘ ap (λ x → ap≃ x {S¹.base}) (S¹.βloop/rec (\ x -> x) (mult-loop))) ∘ ap-o (λ f → f S¹.base) mult S¹.loop | |
module SS = homotopy.FreudenthalIteratedSuspension1 (S¹.S¹) S¹.base (S^-Connected 0) | |
π1[Sn+1] : (n : Positive) -> π One (S^ (n +1)) (base^ (n +1)) ≃ Unit | |
π1[Sn+1] n = π1Connected≃Unit (tlp n) (S^ (S n)) (base^ (S n)) (SS.Susp'^-Connected'' n) (1<=pos n) | |
πk[Sn]-less : (k n : Positive) → tlp k <tl tlp n → π k (S^ n) (base^ n) ≃ Unit | |
πk[Sn]-less One One (ltSR (ltSR (ltSR ()))) | |
πk[Sn]-less One (S n) lt = π1[Sn+1] n | |
πk[Sn]-less (S k) One lt = Sums.abort (pos-not-<=0 k (Inl (lt-unS lt))) | |
πk[Sn]-less (S k) (S n) lt = π (k +1) (S^ (n +1)) (base^ (n +1)) ≃〈 ! (SS.Stable.stable k n (k<=n->k<=2n-2 k n (Inl (lt-unS lt)))) 〉 | |
π k (S^ n) (base^ n) ≃〈 πk[Sn]-less k n (lt-unS lt) 〉 | |
Unit ∎ | |
πn[Sn]-is-Int : ∀ n → π n (S^ n) (base^ n) ≃ Int | |
πn[Sn]-is-Int One = π₁[S¹]-is-Int | |
πn[Sn]-is-Int (S One) = π₁[S¹]-is-Int ∘ π2Susp S¹.S¹ S¹.base S¹-is-Gpd (S^-Connected 0) H-S¹ | |
πn[Sn]-is-Int (S (S n)) = πn[Sn]-is-Int (S n) ∘ ! (SS.Stable.stable (S n) (S n) (k<=n->k<=2n-2 (S n) (S n) (Inr (id , >pos->1 n (S n) ltS)))) | |
-- consequences of stablity for k <= 2n - 2 | |
-- n = 1: k <= 0 | |
-- n = 2: k <= 2 : pi_1(S^2) = pi_2(S^3) and pi_2(S^2) = pi_3(S^3) | |
-- n = 3: k <= 4 : pi_1(S^3) = pi_2(S^4) and pi_2(S^3) = pi_3(S^4) and pi_3(S^3) = pi_4(s^4) and pi_4(S^3) = pi_5(S^4) | |
-- n = 4: k <= 6 : pi_1(S^4) = pi_2(S^5) and pi_2(S^4) = pi_3(S^5) and pi_3(S^4) = pi_4(s^5) and pi_4(S^4) = pi_5(s^5) and pi_5(S^4) = pi_6(s^5) and pi_6(S^4) = pi_7(S^5) | |
-- so: | |
-- k<n : pi_1(S^2) = pi_2(S^3) = pi_3(S^4) = pi_4(s^5) = ... | |
-- pi_1(S^3) = pi_2(S^4) = pi_3(S^5) = ... | |
-- pi_1(S^4) = pi_2(S^5) | |
-- k=n : pi_2(S^2) = pi_3(S^3) = pi_4(s^4) = pi_5(s^5) = ... | |
-- k>n : pi_4(S^3) = pi_5(S^4) = pi_6(s^5) = ... | |
-- pi_6(S^4) = pi_7(S^5) | |
-- to start the diagonals, can prove: | |
-- pi_1(S^2) | |
-- pi_1(S^3) | |
-- pi_1(S^4) | |
-- pi_2(S^2) | |
-- pi_4(S^3) | |
-- pi_6(S^4) |