Skip to content

dongjunchung/GPA

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
August 17, 2017 09:32
October 16, 2014 11:46
man
July 7, 2017 00:07
src
October 16, 2014 11:46
October 16, 2014 11:46
July 6, 2017 23:53
July 6, 2017 23:53
August 17, 2017 09:39
February 26, 2020 19:32

DOI

GPA

GPA (Genetic analysis incorporating Pleiotropy and Annotation) is a statistical approach to prioritizing GWAS results by integrating pleiotropy information and annotation data, proposed in Chung et al. (2014). 'GPA' package provides computationally efficient and user friendly interface to fit the GPA models and implement the hypothesis testing for the pleiotropy and the enrichment of annotation for the associated SNPs. The 'GPA' vignette provides a good start point for the step-by-step data analysis using 'GPA' package. Please check our GPA Google Group for discussions and questions regarding genetic data analysis using 'GPA' package. The following two help pages provide a good start point for the genetic analysis using the 'GPA' package, including the overview of 'GPA' package and the example command lines:

library(GPA)
package?GPA
class?GPA

ShinyGPA

ShinyGPA is an interactive and flexible visualization framework to investigate the pleiotropic architecture using GWAS results, proposed in Kortemeier et al. (2017). The following help page provides the overview of ShinyGPA and the example command lines:

library(GPA)
?shinyGPA

Installation

The stable versions of 'GPA' package can be obtained from the following URLs:

Package source: https://github.com/dongjunchung/GPA_binary/blob/master/GPA_1.1-0.tar.gz?raw=true

Windows binary: https://github.com/dongjunchung/GPA_binary/blob/master/GPA_1.1-0.zip?raw=true

Mac OS/X binary: https://github.com/dongjunchung/GPA_binary/blob/master/GPA_1.1-0.tgz?raw=true

To install the developmental versions of 'GPA' package, it's easiest to use the 'devtools' package. Note that the 'GPA' package depends on the 'Rcpp' package, which also requires appropriate setting of Rtools and Xcode for Windows and Mac OS/X, respectively.

#install.packages("devtools")
library(devtools)
install_github("dongjunchung/GPA")

References

Chung D*, Yang C*, Li C, Gelernter J, and Zhao H (2014), "GPA: A statistical approach to prioritizing GWAS results by integrating pleiotropy information and annotation data," PLoS Genetics, 10: e1004787. (* joint first authors)

Kortemeier E, Ramos PS, Hunt KJ, Kim HJ, Hardiman G, and Chung D (2018), "ShinyGPA: An interactive and dynamic visualization toolkit for genetic studies," PLOS One, 13(1): e0190949.

About

GPA: Genetic analysis incorporating Pleiotropy and Annotation

Resources

Stars

Watchers

Forks

Packages

No packages published