Skip to content

Commit

Permalink
Fixes PenIMC UAF MSRC .NET 8
Browse files Browse the repository at this point in the history
  • Loading branch information
dipeshmsft committed Mar 11, 2024
1 parent 9b8d615 commit c15b5c6
Show file tree
Hide file tree
Showing 2 changed files with 93 additions and 0 deletions.
Expand Up @@ -40,6 +40,11 @@ namespace ComUtils
// The apartment is verified during this call.
HRESULT Unlock();

// Unlocking a wrapper permanently nulls out the server object pointer, so a
// wrapper contains a non-null server object pointer if and only if it is
// bound to a server object which has never been unlocked.
bool HasNotBeenUnlocked() { return (m_serverObject != nullptr); }

private:

IUnknown *m_serverObject;
Expand Down
88 changes: 88 additions & 0 deletions src/Microsoft.DotNet.Wpf/src/PenImc/dll/PimcManager.cpp
Expand Up @@ -396,6 +396,94 @@ void CPimcManager::TerminateHookThread(__inout CHookThreadItem * pThread)
void CPimcManager::FinalRelease()
{
m_wispManagerLock.RevokeIfValid();

//
// The CComObject<CPimcManager> destructor is the only function which calls into this
// FinalRelease code.
//
// In all successful usage of CPimcManager: 1) Managed WPF code uses CoCreateInstance
// to acquire an IPimcManager2 interface to a brand-new CPimcManager instance (created by
// the ATL CComCreator<T>::CreateInstance machinery), meaning FinalConstruct by-definition
// completes successfully, meaning "m_managerLock" is therefore guaranteed to be locked;
// 2) Managed WPF code then runs through its full end-to-end usage of the CPimcManager
// object (generally managed by the code in PenThreadWorker.cs); 3) When/if the managed WPF
// code determines that the CPimcManager object is no longer needed, it sends a
// RELEASE_MANAGER_EXT message (see UnsafeNativeMethods.ReleaseManagerExternalLock()) which
// unlocks "m_managerLock"; 4) Now that it is unlocked, the CComObject<CPimcManager> object
// can be destroyed when/if its refcount drops to zero, and this FinalRelease function will
// run at that time.
//
// So in all successful usage cases, it is guaranteed that "m_managerLock" is already
// unlocked when this code runs (because if it was still locked, the lock itself would have
// prevented the refcount from reaching zero, and would have prevented this function from
// ever running).
//
// That said, in unsuccessful usage cases, the ATL CComCreator<T>::CreateInstance machinery
// can fail, meaning it will destroy the brand-new CPimcManager instance before returning
// an error back to the CreateInstance caller. Destroying the brand-new instance triggers
// the CComObject<CPimcManager> destructor and therefore calls into this function during
// the CComCreator<T>::CreateInstance operation itself.
//
// The final step in CComCreator<T>::CreateInstance is a QI which queries the newly-created
// object for whatever interface has been requested by the caller. This operation is the
// main way that CComCreator<T>::CreateInstance can fail. For example, this QI is
// guaranteed to fail whenever the CoCreateInstance caller targets the CPimcManager CLSID
// but passes in a "random" IID that has nothing to do with IPimcManager2 or anything else
// that CPimcManager implements.
//
// (In CPimcManager construction, outside of pathological cases (e.g., where a small heap
// allocation in OS code fails due to out-of-memory), there are no other known ways that
// the CComCreator<T>::CreateInstance sequence can fail; so the QI failure is the only
// failure mode that is known to be of general interest.)
//
// The QI failure can only occur after the preceding FinalConstruct call has completed
// successfully (since any FinalConstruct failure would have caused
// CComCreator<T>::CreateInstance to abort without ever trying the QI); since
// CPimcManager::FinalConstruct always locks the "m_managerLock", this implies that the
// "m_managerLock" is guaranteed to be locked when this code runs (which is exactly
// opposite to what happens in all successful usage cases as discussed above).
//
// In this case, it is crucial to unlock "m_managerLock" before allowing this CPimcManager
// object to be destroyed. Without the unlock, this CPimcManager object would be destroyed
// while the associated CStdIdentity in the OS code still holds a reference to it; during
// any future apartment unload, the OS code would release this reference, and the release
// would be a use-after-free at that point.
//
// Note that the crucial unlock causes overactive ATL debug asserts to fire if a chk build
// of this DLL is used; specifically:
//
// - The code in the CComObject<CPimcManager> destructor always stomps the refcount to
// 0xc0000001 (i.e., "-(LONG_MAX/2)"), meaning this CPimcManager object's refcount is
// always 0xc0000001 when this code runs; unlocking "m_managerLock" will cause the refcount
// to drop by one (because, as discussed above, the crucial operation which prevents
// use-after-free problems will release the associated CStdIdentity's reference to this
// CPimcManager object, and in this way releases the reference that was added when
// "managerLock" was locked during FinalConstruct); as a result, unlocking "m_managerLock"
// will move this CPimcManager object's refcount through a "0xc0000001 -> 0xc0000000"
// transition.
//
// - Both of the CComObjectRootEx<T>::InternalRelease specializations contain debug asserts
// which will fire whenever the refcount drops below 0xc0000001, so this transition always
// triggers a debug assert when using a chk build of this DLL.
//
// - That said, all evidence strongly suggests that this is just an overactive assert in
// the ATL code (probably just indicating that it is rare for FinalConstruct to add
// "self-references" like it does for CPimcManager (since these self-references generally
// prevent the server object from being destroyed unless a manual action like the
// RELEASE_MANAGER_EXT message is taken later on), meaning it is rare to have a situation
// where FinalRelease needs to release self-references that were acquired in
// FinalConstruct, meaning this is a rare enough case that the ATL authors either didn't
// test it or didn't think it was common enough to warrant adjusting the assert).
//
// Since this change is being made in servicing, attempt to change behavior as little as
// possible in the "successful usage" cases where "m_managerLock" is already unlocked,
// while still ensuring that FinalRelease will always run the crucial unlock in all
// "unsuccessful usage" cases.
//
if (m_managerLock.HasNotBeenUnlocked())
{
m_managerLock.Unlock();
}
}

/////////////////////////////////////////////////////////////////////////////
Expand Down

0 comments on commit c15b5c6

Please sign in to comment.