Skip to content

duke-vision/optical-flow-active-learning-release

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Optical Flow Training under Limited Label Budget via Active Learning (ECCV-2022)

Python 3.6.9 PyTorch 1.1.0

This repository contains the PyTorch implementation of our paper titled Optical Flow Training under Limited Label Budget via Active Learning, which has been accepted by ECCV-2022.

Poster | Video (YouTube) | Video (Bilibili)

Citation

@InProceedings{yuan2022optical,
  title =     "Optical Flow Training Under Limited Label Budget via Active Learning",
  author =    "Yuan, Shuai and Sun, Xian and Kim, Hannah and Yu, Shuzhi and Tomasi, Carlo",
  booktitle = "European Conference on Computer Vision",
  pages =     "410--427",
  year =      "2022"
}

Code credits

Requirements

Software

This code has been developed under Python 3.6.9, PyTorch 1.1.0, and CUDA 10.0 on Ubuntu 18.04. The environment can be built by the following:

# Install python packages
pip3 install -r requirements.txt

# Compile the coorelation package with gcc and g++ >= 4.9
cd ./models/correlation_package
python3 setup.py install

# Additional dependencies for training
sudo apt-get update && apt-get install -y libsm6 libxext6 libxrender-dev
pip3 install 'opencv-python>=3.0,<4.0' path.py tensorboardX fast_slic

For any trouble with the correlation package, there is also an alternative implementation (See models/pwclite.py; uncomment to switch implementations).

Datasets

Due to copyright issues, please download the dataset from the official websites.

  • FlyingChairs: We use the official train/val split. Please put the split file FlyingChairs_train_val.txt inside the FlyingChairs_release folder at the same level with the data folder.

  • FlyingThings3D: We use the DispNet/FlowNet2.0 dataset subsets in our flow experiments. Please download the RGB images (cleanpass) and Optical flow splits.

  • Sintel: Sintel clean+final; Sintel raw (prepared by ARFlow authors; please follow instructions on this page to download).

  • KITTI: KITTI 2015; KITTI 2012; KITTI raw.

Pre-trained models

All pre-trained models for Sintel and KITTI benchmark testing can be downloaded here.

Usage

Our code can be simply run by

python3 train.py -c configs/YOUR_CONFIG.json --n_gpu=N_GPU --user=USER --name=EXPNAME

Please specify YOUR_CONFIG.json as the configuration file you want to use. We have kept all the configuration files under the configs folder. Please make sure that you change the dataset root paths in the configuration files before you run them. Please specify USER and EXPNAME as your user name and the name of this experiment, respectively. Specify N_GPU as the number of GPUs.

Also, please update the dataset root paths in select.py, Line 50, 51, 61, 62, 72, 73, 83, 95, 107, 119, 134 and test.py, Line 155, 159, 160. Please set up the SAVE_ROOT (the directory where you want to keep the results) at train.py, Line 67. All results of this experiment will be saved automatically under SAVE_ROOT/USER/yyyymmdd_hhmmss_EXPNAME/, where yyyymmdd_hhmmss is the time stamp when you start the experiment.

Semi-supervised training

FlyingChairs validation errors (Reproducing Fig. 2a in the paper)

  1. Specify your dataset path at configs/chairs.json, Line 9.
  2. Specify your label ratio (between 0 and 1) at configs/chairs.json, Line 8. Put 0 for totally unsupervised and 1 for totally supervised.
  3. Run
python3 train.py -c configs/chairs.json --n_gpu=N_GPU --user=USER --name=EXPNAME

FlyingThings3D validation errors (Reproducing Fig. 2b in the paper)

  1. Specify your dataset path at configs/things3d.json, Line 9.
  2. Specify your label ratio (between 0 and 1) at configs/things3d.json, Line 8. Put 0 for totally unsupervised and 1 for totally supervised.
  3. Run
python3 train.py -c configs/things3d.json --n_gpu=N_GPU --user=USER --name=EXPNAME

Sintel validation errors (Reproducing Fig. 2c in the paper)

  1. Specify your dataset path at configs/sintel_raw.json, Line 1&2 and configs/sintel_ft_ar.json, Line 9.
  2. Specify your label ratio (between 0 and 1) at configs/sintel_ft_ar.json, Line 8.
  3. Pre-train on the raw data (unsupervised) by
python3 train.py -c configs/sintel_raw.json --n_gpu=N_GPU --user=USER --name=EXPNAME

The model will be saved under the experiment folder (let's call it PRETRAINED_SINTEL) as model_ep500_ckpt.pth.tar. 4. Specify the pre-trained model path at configs/sintel_ft_ar.json, Line 65 as PRETRAINED_SINTEL/model_ep500_ckpt.pth.tar. 5. Train on our train split (semi-supervised) by

python3 train.py -c configs/sintel_ft_ar.json --n_gpu=N_GPU --user=USER --name=EXPNAME

KITTI validation errors (Reproducing Fig. 2d in the paper)

  1. Specify your dataset path at configs/kitti_raw.json, Line 1&2&3 and configs/kitti_ft_ar.json, Line 9&10.
  2. Specify your label ratio (between 0 and 1) at configs/kitti_ft_ar.json, Line 8.
  3. Pre-train on the raw data (unsupervised) by
python3 train.py -c configs/kitti_raw.json --n_gpu=N_GPU --user=USER --name=EXPNAME

The model will be saved under the experiment folder (let's call it PRETRAINED_KITTI) as model_ep500_ckpt.pth.tar.

  1. Specify the pre-trained model path at configs/kitti_ft_ar.json, Line 65 as PRETRAINED_KITTI/model_ep500_ckpt.pth.tar.
  2. Train on our train split (semi-supervised) by
python3 train.py -c configs/kitti_ft_ar.json --n_gpu=N_GPU --user=USER --name=EXPNAME

Active Leraning

Sintel validation errors (Reproducing Fig. 3a in the paper)

  1. Infer on the candidate set (our train split) and compute uncertainty scores by
python3 select.py --model=PRETRAINED_SINTEL/model_ep500_ckpt.pth.tar --candidate-set=sintel_train --score_method=occ_ratio

The sorted list of scores will be saved under PRETRAINED_SINTEL as model_ep500_ckpt_sintel_train_occ_ratio.txt. Feel free to change the --score_method here to photo_loss or flow_grad_norm to test other uncertainty scores.

  1. Specify your dataset path at configs/sintel_ft_ar_active.json, Line 9.
  2. Specify your sorted score path at configs/sintel_ft_ar_active.json, Line 11.
  3. Specify your label ratio (between 0 and 1) at configs/sintel_ft_ar_active.json, Line 8.
  4. Run the active learning
python3 train.py -c configs/sintel_ft_ar_active.json --n_gpu=N_GPU --user=USER --name=EXPNAME

KITTI validation errors (Reproducing Fig. 3b in the paper)

  1. Infer on the candidate set (our train split) and compute uncertainty scores by
python3 select.py --model=PRETRAINED_KITTI/model_ep500_ckpt.pth.tar --candidate-set=kitti_train --score_method=occ_ratio

The sorted list of scores will be saved under PRETRAINED_KITTI as model_ep500_ckpt_kitti_train_occ_ratio.txt. Feel free to change the --score_method here to photo_loss or flow_grad_norm to test other uncertainty scores.

  1. Specify your dataset path at configs/kitti_ft_ar_active.json, Line 9&10.
  2. Specify your sorted score path at configs/kitti_ft_ar_active.json, Line 12.
  3. Specify your label ratio (between 0 and 1) at configs/kitti_ft_ar_active.json, Line 8.
  4. Run the active learning
python3 train.py -c configs/kitti_ft_ar_active.json --n_gpu=N_GPU --user=USER --name=EXPNAME

Sintel benchmark testing (Reproducing Tab. 1 in the paper)

The same procedure as the "Sintel validation errors" above. Only need to change to --candidate-set=sintel_trainval in Step 1 and use configs/kitti_ft_ar_active_test.json instead. For the modified version "occ-2x" in the paper, use configs/sintel_ft_ar_active_test_double.json instead.

To infer on the test set and prepare to submit, run

# inference
export CKPT_FOLDER=/YOUR/EXP/FOLDER
python3 test.py --dataset=sintel --model-folder=$CKPT_FOLDER --trained-model=model_ep1000_ckpt.pth.tar

# prepare for submission
cd /PATH/TO/YOUR/MPI-Sintel/bundler/linux-x64
./bundler $CKPT_FOLDER/test_flow_sintel/clean/ $CKPT_FOLDER/test_flow_sintel/final/ $CKPT_FOLDER/test_flow_sintel/submit.lzma

KITTI benchmark testing (Reproducing Tab. 2 in the paper)

The same procedure as the "KITTI validation errors" above. Only need to change to --candidate-set=kitti_trainval in Step 1 and use configs/kitti_ft_ar_active_test.json instead.

To infer on the test set and submit, run

# inference
export CKPT_FOLDER=/YOUR/EXP/FOLDER
python3 test.py --dataset=kitti --model-folder=$CKPT_FOLDER --trained-model=model_ep1000_ckpt.pth.tar

# prepare for submission
cd $CKPT_FOLDER/test_flow_kitti/kitti2012/flow
zip ../../flow2012.zip *
cd $CKPT_FOLDER/test_flow_kitti/kitti2015
zip -r ../kitti2015.zip *

Ablation study (Reproducing Tab. 3 in the paper)


Last update: 07/16/2022

About

The official PyTorch implementation of the paper "Optical Flow Training under Limited Label Budget via Active Learning" (ECCV 2022)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published