Skip to content

Commit

Permalink
repository initialized
Browse files Browse the repository at this point in the history
  • Loading branch information
ekmett committed Jan 25, 2012
0 parents commit 7928254
Show file tree
Hide file tree
Showing 24 changed files with 1,932 additions and 0 deletions.
168 changes: 168 additions & 0 deletions Control/Monad/Cont.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
{- |
Module : Control.Monad.Cont
Copyright : (c) The University of Glasgow 2001,
(c) Jeff Newbern 2003-2007,
(c) Andriy Palamarchuk 2007
License : BSD-style (see the file LICENSE)
Maintainer : libraries@haskell.org
Stability : experimental
Portability : portable
[Computation type:] Computations which can be interrupted and resumed.
[Binding strategy:] Binding a function to a monadic value creates
a new continuation which uses the function as the continuation of the monadic
computation.
[Useful for:] Complex control structures, error handling,
and creating co-routines.
[Zero and plus:] None.
[Example type:] @'Cont' r a@
The Continuation monad represents computations in continuation-passing style
(CPS).
In continuation-passing style function result is not returned,
but instead is passed to another function,
received as a parameter (continuation).
Computations are built up from sequences
of nested continuations, terminated by a final continuation (often @id@)
which produces the final result.
Since continuations are functions which represent the future of a computation,
manipulation of the continuation functions can achieve complex manipulations
of the future of the computation,
such as interrupting a computation in the middle, aborting a portion
of a computation, restarting a computation, and interleaving execution of
computations.
The Continuation monad adapts CPS to the structure of a monad.
Before using the Continuation monad, be sure that you have
a firm understanding of continuation-passing style
and that continuations represent the best solution to your particular
design problem.
Many algorithms which require continuations in other languages do not require
them in Haskell, due to Haskell's lazy semantics.
Abuse of the Continuation monad can produce code that is impossible
to understand and maintain.
-}

module Control.Monad.Cont (
-- * MonadCont class
MonadCont(..),
-- * The Cont monad
Cont,
cont,
runCont,
mapCont,
withCont,
-- * The ContT monad transformer
ContT(..),
mapContT,
withContT,
module Control.Monad,
module Control.Monad.Trans,
-- * Example 1: Simple Continuation Usage
-- $simpleContExample

-- * Example 2: Using @callCC@
-- $callCCExample

-- * Example 3: Using @ContT@ Monad Transformer
-- $ContTExample
) where

import Control.Monad.Cont.Class

import Control.Monad.Trans
import Control.Monad.Trans.Cont

import Control.Monad

{- $simpleContExample
Calculating length of a list continuation-style:
>calculateLength :: [a] -> Cont r Int
>calculateLength l = return (length l)
Here we use @calculateLength@ by making it to pass its result to @print@:
>main = do
> runCont (calculateLength "123") print
> -- result: 3
It is possible to chain 'Cont' blocks with @>>=@.
>double :: Int -> Cont r Int
>double n = return (n * 2)
>
>main = do
> runCont (calculateLength "123" >>= double) print
> -- result: 6
-}

{- $callCCExample
This example gives a taste of how escape continuations work, shows a typical
pattern for their usage.
>-- Returns a string depending on the length of the name parameter.
>-- If the provided string is empty, returns an error.
>-- Otherwise, returns a welcome message.
>whatsYourName :: String -> String
>whatsYourName name =
> (`runCont` id) $ do -- 1
> response <- callCC $ \exit -> do -- 2
> validateName name exit -- 3
> return $ "Welcome, " ++ name ++ "!" -- 4
> return response -- 5
>
>validateName name exit = do
> when (null name) (exit "You forgot to tell me your name!")
Here is what this example does:
(1) Runs an anonymous 'Cont' block and extracts value from it with
@(\`runCont\` id)@. Here @id@ is the continuation, passed to the @Cont@ block.
(1) Binds @response@ to the result of the following 'Control.Monad.Cont.Class.callCC' block,
binds @exit@ to the continuation.
(1) Validates @name@.
This approach illustrates advantage of using 'Control.Monad.Cont.Class.callCC' over @return@.
We pass the continuation to @validateName@,
and interrupt execution of the @Cont@ block from /inside/ of @validateName@.
(1) Returns the welcome message from the 'Control.Monad.Cont.Class.callCC' block.
This line is not executed if @validateName@ fails.
(1) Returns from the @Cont@ block.
-}

{-$ContTExample
'ContT' can be used to add continuation handling to other monads.
Here is an example how to combine it with @IO@ monad:
>import Control.Monad.Cont
>import System.IO
>
>main = do
> hSetBuffering stdout NoBuffering
> runContT (callCC askString) reportResult
>
>askString :: (String -> ContT () IO String) -> ContT () IO String
>askString next = do
> liftIO $ putStrLn "Please enter a string"
> s <- liftIO $ getLine
> next s
>
>reportResult :: String -> IO ()
>reportResult s = do
> putStrLn ("You entered: " ++ s)
Action @askString@ requests user to enter a string,
and passes it to the continuation.
@askString@ takes as a parameter a continuation taking a string parameter,
and returning @IO ()@.
Compare its signature to 'runContT' definition.
-}
130 changes: 130 additions & 0 deletions Control/Monad/Cont/Class.hs
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
{- |
Module : Control.Monad.Cont.Class
Copyright : (c) The University of Glasgow 2001,
(c) Jeff Newbern 2003-2007,
(c) Andriy Palamarchuk 2007
License : BSD-style (see the file LICENSE)
Maintainer : libraries@haskell.org
Stability : experimental
Portability : portable
[Computation type:] Computations which can be interrupted and resumed.
[Binding strategy:] Binding a function to a monadic value creates
a new continuation which uses the function as the continuation of the monadic
computation.
[Useful for:] Complex control structures, error handling,
and creating co-routines.
[Zero and plus:] None.
[Example type:] @'Cont' r a@
The Continuation monad represents computations in continuation-passing style
(CPS).
In continuation-passing style function result is not returned,
but instead is passed to another function,
received as a parameter (continuation).
Computations are built up from sequences
of nested continuations, terminated by a final continuation (often @id@)
which produces the final result.
Since continuations are functions which represent the future of a computation,
manipulation of the continuation functions can achieve complex manipulations
of the future of the computation,
such as interrupting a computation in the middle, aborting a portion
of a computation, restarting a computation, and interleaving execution of
computations.
The Continuation monad adapts CPS to the structure of a monad.
Before using the Continuation monad, be sure that you have
a firm understanding of continuation-passing style
and that continuations represent the best solution to your particular
design problem.
Many algorithms which require continuations in other languages do not require
them in Haskell, due to Haskell's lazy semantics.
Abuse of the Continuation monad can produce code that is impossible
to understand and maintain.
-}

module Control.Monad.Cont.Class (
MonadCont(..),
) where

import Control.Monad.Trans.Cont (ContT)
import qualified Control.Monad.Trans.Cont as ContT
import Control.Monad.Trans.Error as Error
import Control.Monad.Trans.Identity as Identity
import Control.Monad.Trans.List as List
import Control.Monad.Trans.Maybe as Maybe
import Control.Monad.Trans.Reader as Reader
import Control.Monad.Trans.RWS.Lazy as LazyRWS
import Control.Monad.Trans.RWS.Strict as StrictRWS
import Control.Monad.Trans.State.Lazy as LazyState
import Control.Monad.Trans.State.Strict as StrictState
import Control.Monad.Trans.Writer.Lazy as LazyWriter
import Control.Monad.Trans.Writer.Strict as StrictWriter

import Control.Monad
import Data.Monoid

class (Monad m) => MonadCont m where
{- | @callCC@ (call-with-current-continuation)
calls a function with the current continuation as its argument.
Provides an escape continuation mechanism for use with Continuation monads.
Escape continuations allow to abort the current computation and return
a value immediately.
They achieve a similar effect to 'Control.Monad.Error.throwError'
and 'Control.Monad.Error.catchError'
within an 'Control.Monad.Error.Error' monad.
Advantage of this function over calling @return@ is that it makes
the continuation explicit,
allowing more flexibility and better control
(see examples in "Control.Monad.Cont").
The standard idiom used with @callCC@ is to provide a lambda-expression
to name the continuation. Then calling the named continuation anywhere
within its scope will escape from the computation,
even if it is many layers deep within nested computations.
-}
callCC :: ((a -> m b) -> m a) -> m a

instance MonadCont (ContT r m) where
callCC = ContT.callCC

-- ---------------------------------------------------------------------------
-- Instances for other mtl transformers

instance (Error e, MonadCont m) => MonadCont (ErrorT e m) where
callCC = Error.liftCallCC callCC

instance (MonadCont m) => MonadCont (IdentityT m) where
callCC = Identity.liftCallCC callCC

instance (MonadCont m) => MonadCont (ListT m) where
callCC = List.liftCallCC callCC

instance (MonadCont m) => MonadCont (MaybeT m) where
callCC = Maybe.liftCallCC callCC

instance (MonadCont m) => MonadCont (ReaderT r m) where
callCC = Reader.liftCallCC callCC

instance (Monoid w, MonadCont m) => MonadCont (LazyRWS.RWST r w s m) where
callCC = LazyRWS.liftCallCC' callCC

instance (Monoid w, MonadCont m) => MonadCont (StrictRWS.RWST r w s m) where
callCC = StrictRWS.liftCallCC' callCC

instance (MonadCont m) => MonadCont (LazyState.StateT s m) where
callCC = LazyState.liftCallCC' callCC

instance (MonadCont m) => MonadCont (StrictState.StateT s m) where
callCC = StrictState.liftCallCC' callCC

instance (Monoid w, MonadCont m) => MonadCont (LazyWriter.WriterT w m) where
callCC = LazyWriter.liftCallCC callCC

instance (Monoid w, MonadCont m) => MonadCont (StrictWriter.WriterT w m) where
callCC = StrictWriter.liftCallCC callCC
Loading

0 comments on commit 7928254

Please sign in to comment.