Human Pose estimation with TensorFlow framework
Switch branches/tags
Nothing to show
Clone or download
eldar Merge pull request #50 from andreas-eberle/fix-upgrade-tensorflow-1_4
Fix issue appearing when upgrading to tensorflow 1.4
Latest commit fa19aec Nov 8, 2017

README.md

Human Pose Estimation with TensorFlow

Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the ArtTrack and DeeperCut papers:

Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka and Bernt Schiele DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model. In European Conference on Computer Vision (ECCV), 2016

Eldar Insafutdinov, Mykhaylo Andriluka, Leonid Pishchulin, Siyu Tang, Evgeny Levinkov, Bjoern Andres and Bernt Schiele ArtTrack: Articulated Multi-person Tracking in the Wild. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017

For more information visit http://pose.mpi-inf.mpg.de

Python 3 is required to run this code. First of all, you should install TensorFlow as described in the official documentation. We recommended to use virtualenv.

You will also need to install the following Python packages:

$ pip3 install scipy scikit-image matplotlib pyyaml easydict cython munkres

When running training or prediction scripts, please make sure to set the environment variable TF_CUDNN_USE_AUTOTUNE to 0 (see this ticket for explanation).

If your machine has multiple GPUs, you can select which GPU you want to run on by setting the environment variable, eg. CUDA_VISIBLE_DEVICES=0.

Demo code

Single-Person (if there is only one person in the image)

# Download pre-trained model files
$ cd models/mpii
$ ./download_models.sh
$ cd -

# Run demo of single person pose estimation
$ TF_CUDNN_USE_AUTOTUNE=0 python3 demo/singleperson.py

Multiple People

# Compile dependencies
$ ./compile.sh

# Download pre-trained model files
$ cd models/coco
$ ./download_models.sh
$ cd -

# Run demo of multi person pose estimation
$ TF_CUDNN_USE_AUTOTUNE=0 python3 demo/demo_multiperson.py

Training models

Please follow these instructions

Citation

Please cite ArtTrack and DeeperCut in your publications if it helps your research:

@inproceedings{insafutdinov2017cvpr,
    title = {ArtTrack: Articulated Multi-person Tracking in the Wild},
    booktitle = {CVPR'17},
    url = {http://arxiv.org/abs/1612.01465},
    author = {Eldar Insafutdinov and Mykhaylo Andriluka and Leonid Pishchulin and Siyu Tang and Evgeny Levinkov and Bjoern Andres and Bernt Schiele}
}

@article{insafutdinov2016eccv,
    title = {DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model},
    booktitle = {ECCV'16},
    url = {http://arxiv.org/abs/1605.03170},
    author = {Eldar Insafutdinov and Leonid Pishchulin and Bjoern Andres and Mykhaylo Andriluka and Bernt Schiele}
}