A bestiary of evolutionary, swarm and other metaphor-based algorithms
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.
Cages Added Mushroom reproduction optimization Jul 12, 2018
README_maker Added Mushroom reproduction optimization Jul 12, 2018
analysis_files Some more work on name matching and analysis May 7, 2018
bestiary_references Updated scraping routine to retrieve citation counts May 3, 2018
img Plot: most common author names Apr 30, 2018
.gitignore Updated .gitignore May 2, 2018
README.md Added Mushroom reproduction optimization Jul 12, 2018
_config.yml Set theme jekyll-theme-merlot Mar 31, 2018


Evolutionary Computation Bestiary


Updated 2018-07-12

"Till now, madness has been thought a small island in an ocean of sanity. I am beginning to suspect that it is not an island at all but a continent." -- Machado de Assis, The Psychiatrist.


The field of meta-heuristic search algorithms has a long history of finding inspiration in natural systems. Starting from classics such as Genetic Algorithms and Ant Colony Optimization, the last two decades have witnessed a fireworks-style explosion (pun intended) of natural (and sometimes supernatural) heuristics - from Birds and Bees to Zombies and Reincarnation.

The goal of the Evolutionary Computation Bestiary is to catalog the, ermm... exuberance of the meta-heuristic "eco-system". We try to keep a list of the many different animals, plants, microbes, natural phenomena and supernatural activities that can be spotted in the wild lands of the metaphor-based computation literature.

While we personally believe that the literature could do with more mathematics and less marsupials, and that we, as a community, should grow past this metaphor-rich phase in our field's history (a bit like chemistry outgrew alchemy), please note that this list makes no claims about the scientific quality of the papers listed. The EC Bestiary puts classic works of the metaheuristics literature (e.g., GAs, ACO) and some that describe their methods in mostly metaphor-free language (e.g., JTF, CFO) side by side with others for which the scientific rigor is, to put it mildly, lacking. In short, it is not a Hall of Fame of algorithms - think of it more as The island of Doctor Moreau: a place with a few good creatures, but which are vastly outnumbered by mindless beasts.

Finally, if you know a metaphor-based method that is not listed here, or if you know of an earlier mention of a listed method, please see the bottom of the page on how to contribute!

The Bestiary

BioHeuristics GO


  • African Buffalo: Odili JB, Kahar MNM (2016). “Solving the Traveling Salesman's Problem Using the African Buffalo Optimization.” Computational Intelligence and Neuroscience, 2016, 1-12. doi: 10.1155/2016/1510256
  • Algae: Uymaz SA, Tezel G, Yel E (2015). “Artificial algae algorithm (AAA) for nonlinear global optimization.” Applied Soft Computing, 31, 153-171. doi: 10.1016/j.asoc.2015.03.003
  • Amoeba: Wang H, Lu X, Zhang X, Wang Q, Deng Y (2014). “A Bio-Inspired Method for the Constrained Shortest Path Problem.” The Scientific World Journal, 2014, 1-11. doi: 10.1155/2014/271280
  • Anarchic Society: Shayeghi H, Dadashpour J (2012). “Anarchic Society Optimization Based PID Control of an Automatic Voltage Regulator (AVR) System.” Electrical and Electronic Engineering, 2(4), 199-207. doi: 10.5923/j.eee.20120204.05
  • Andean Condors: Almonacid B, Soto R (2018). “Andean Condor Algorithm for cell formation problems.” Natural Computing. doi: 10.1007/s11047-018-9675-0
  • Animal Behavior: Hunting: Naderi B, Khalili M, Khamseh AA (2014). “Mathematical models and a hunting search algorithm for the no-wait flowshop scheduling with parallel machines.” International Journal of Production Research, 52(9), 2667-2681. doi: 10.1080/00207543.2013.871389
  • Animal Behavior: Predation: Tilahun SL, Ong HC (2015). “Prey-Predator Algorithm: A New Metaheuristic Algorithm for Optimization Problems.” International Journal of Information Technology & Decision Making, 14(06), 1331-1352. doi: 10.1142/s021962201450031x
  • Animal Behavior: Searching: He S, Wu Q, Saunders J (2009). “Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior.” IEEE Transactions on Evolutionary Computation, 13(5), 973-990. doi: 10.1109/tevc.2009.2011992
  • Ant Colony: Maniezzo A (1992). “Distributed optimization by ant colonies.” In Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, 134. Mit Press.
  • Ant Lion: Mirjalili S (2015). “The Ant Lion Optimizer.” Advances in Engineering Software, 83, 80-98. doi: 10.1016/j.advengsoft.2015.01.010
  • Antibodies: De Castro LN, Von Zuben FJ (2000). “The clonal selection algorithm with engineering applications.” In Proceedings of GECCO, volume 2000, 36-39.


  • Bachelors: Hu TC, Kahng AB, Tsao CA (1995). “Old Bachelor Acceptance: A New Class of Non-Monotone Threshold Accepting Methods.” ORSA Journal on Computing, 7(4), 417-425. doi: 10.1287/ijoc.7.4.417
  • Bacteria: Bacterial Chemotaxis: Muller S, Marchetto J, Airaghi S, Kournoutsakos P (2002). “Optimization based on bacterial chemotaxis.” IEEE Transactions on Evolutionary Computation, 6(1), 16-29. doi: 10.1109/4235.985689
  • Bacteria: Bacterial Foraging: Passino K (2002). “Biomimicry of bacterial foraging for distributed optimization and control.” IEEE Control Systems Magazine, 22(3), 52-67. doi: 10.1109/mcs.2002.1004010
  • Bacteria: Bacterial Swarming: Chu Y, Mi H, Liao H, Ji Z, Wu QH (2008). “A Fast Bacterial Swarming Algorithm for high-dimensional function optimization.” In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). doi: 10.1109/cec.2008.4631222
  • Bacteria: Magnetotactic Bacteria: Mo H, Xu L (2013). “Magnetotactic bacteria optimization algorithm for multimodal optimization.” In 2013 IEEE Symposium on Swarm Intelligence (SIS). doi: 10.1109/sis.2013.6615185
  • Bats: Yang X (2010). “A new metaheuristic bat-inspired algorithm.” In Nature inspired cooperative strategies for optimization (NICSO 2010), 65-74. Springer.
  • Bees: Bee Colonies: Teodorovic D, Lucic P, Markovic G, Orco MD (2006). “Bee Colony Optimization: Principles and Applications.” In 2006 8th Seminar on Neural Network Applications in Electrical Engineering. doi: 10.1109/neurel.2006.341200
  • Bees: Bumblebees: Comellas F, Martinez-Navarro J (2009). “Bumblebees.” In Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation - GEC \textquotesingle09. doi: 10.1145/1543834.1543949
  • Bees: Honey Bee Marriages: Abbass H (2001). “MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach.” In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546). doi: 10.1109/cec.2001.934391
  • Bees: Queen Bees: Jung SH (2003). “Queen-bee evolution for genetic algorithms.” Electronics Letters, 39(6), 575. doi: 10.1049/el:20030383
  • Beetles: Kallioras NA, Lagaros ND, Avtzis DN (2018). “Pity beetle algorithm \textendash A new metaheuristic inspired by the behavior of bark beetles.” Advances in Engineering Software, 121, 147-166. doi: 10.1016/j.advengsoft.2018.04.007
  • Big Bang: Erol OK, Eksin I (2006). “A new optimization method: Big Bang\textendashBig Crunch.” Advances in Engineering Software, 37(2), 106-111. doi: 10.1016/j.advengsoft.2005.04.005
  • Biogeography: Simon D (2008). “Biogeography-Based Optimization.” IEEE Transactions on Evolutionary Computation, 12(6), 702-713. doi: 10.1109/tevc.2008.919004
  • Birds: Bird Migrations: Duman E, Uysal M, Alkaya AF (2012). “Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic assignment problem.” Information Sciences, 217, 65-77. doi: 10.1016/j.ins.2012.06.032
  • Birds: Birds Mating: Askarzadeh A (2014). “Bird mating optimizer: An optimization algorithm inspired by bird mating strategies.” Communications in Nonlinear Science and Numerical Simulation, 19(4), 1213-1228. doi: 10.1016/j.cnsns.2013.08.027
  • Black Holes: Hatamlou A (2013). “Black hole: A new heuristic optimization approach for data clustering.” Information Sciences, 222, 175-184. doi: 10.1016/j.ins.2012.08.023
  • Blind Naked Mole Rats: Taherdangkoo M, Shirzadi MH, Yazdi M, Bagheri MH (2013). “A robust clustering method based on blind, naked mole-rats (BNMR) algorithm.” Swarm and Evolutionary Computation, 10, 1-11. doi: 10.1016/j.swevo.2013.01.001
  • Brainstorming: Shi Y (2011). “An Optimization Algorithm Based on Brainstorming Process.” International Journal of Swarm Intelligence Research, 2(4), 35-62. doi: 10.4018/ijsir.2011100103
  • Butterflies: Monarch Butterflies: Wang G, Deb S, Cui Z (2015). “Monarch butterfly optimization.” Neural Computing and Applications. doi: 10.1007/s00521-015-1923-y


  • Camels: M. K. Ibrahim RSA (2016). “Novel Optimization Algorithm Inspired by Camel Traveling Behavior.” Iraq J. Electrical and Electronic Engineering, 12(2). doi: 10.1007/s00707-009-0270-4
  • Cancers: Tang D, Dong S, Jiang Y, Li H, Huang Y (2015). “ITGO: Invasive tumor growth optimization algorithm.” Applied Soft Computing, 36, 670-698. doi: 10.1016/j.asoc.2015.07.045
  • Cats: Chu S, Tsai P, Pan J (2006). “Cat Swarm Optimization.” In Lecture Notes in Computer Science, 854-858. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-36668-3_94
  • Central Force: Formato RA (2007). “CENTRAL FORCE OPTIMIZATION: A NEW METAHEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS.” Progress In Electromagnetics Research, 77, 425-491. doi: 10.2528/pier07082403
  • Charged Systems: Kaveh A, Talatahari S (2010). “A novel heuristic optimization method: charged system search.” Acta Mechanica, 213(3-4), 267-289. doi: 10.1007/s00707-009-0270-4
  • Chemical Reactions: Alatas B (2011). “ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization.” Expert Systems with Applications, 38(10), 13170-13180. doi: 10.1016/j.eswa.2011.04.126
  • Chickens: Chicken Laying Eggs: Hosseini E (2017). “Laying Chicken Algorithm: A New Meta-Heuristic Approach to Solve Continuous Programming Problems.” Journal of Applied & Computational Mathematics, 06(01). doi: 10.4172/2168-9679.1000344
  • Chickens: Chicken Swarms: Meng X, Liu Y, Gao X, Zhang H (2014). “A New Bio-inspired Algorithm: Chicken Swarm Optimization.” In Lecture Notes in Computer Science, 86-94. Springer International Publishing. doi: 10.1007/978-3-319-11857-4_10
  • Clouds: YAN G, HAO Z (2013). “A NOVEL OPTIMIZATION ALGORITHM BASED ON ATMOSPHERE CLOUDS MODEL.” International Journal of Computational Intelligence and Applications, 12(01), 1350002. doi: 10.1142/s1469026813500028
  • Cockroaches: Obagbuwa IC, Adewumi AO (2014). “An Improved Cockroach Swarm Optimization.” The Scientific World Journal, 2014, 1-13. doi: 10.1155/2014/375358
  • Colliding Bodies: Kaveh A, Mahdavi V (2014). “Colliding bodies optimization: A novel meta-heuristic method.” Computers & Structures, 139, 18-27. doi: 10.1016/j.compstruc.2014.04.005
  • Community of scientists: Alfredo M, Valentino S (2012). “Community of scientist optimization: An autonomy oriented approach to distributed optimization.” AI Communications, 25(2), 157–172. ISSN 0921-7126, doi: 10.3233/AIC-2012-0526
  • Consultants: Iordache S (2010). “Consultant-guided search.” In Proceedings of the 12th annual conference on Genetic and evolutionary computation - GECCO \textquotesingle10. doi: 10.1145/1830483.1830526
  • Coral Reefs: Salcedo-Sanz S, Ser JD, Landa-Torres I, Gil-López S, Portilla-Figueras JA (2014). “The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems.” The Scientific World Journal, 2014, 1-15. doi: 10.1155/2014/739768
  • Crows: Askarzadeh A (2016). “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm.” Computers & Structures, 169, 1-12. doi: 10.1016/j.compstruc.2016.03.001
  • Crystal Energy: Feng X, Ma M, Yu H (2014). “Crystal Energy Optimization Algorithm.” Computational Intelligence, 32(2), 284-322. doi: 10.1111/coin.12053
  • Cuckoos: Yang X, Deb S (2009). “Cuckoo Search via L&#x00E9$\mathsemicolon$vy flights.” In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). doi: 10.1109/nabic.2009.5393690


  • Deer: Scottish Red Deer: Fard AF, Hajiaghaei-Keshteli M (2016). “Red Deer Algorithm (RDA); A New Optimization Algorithm Inspired by Red Deers’ Mating.” In International Conference on Industrial Engineering, IEEE.,(2016 e), 33-34.
  • Dogs: Subramanian C, Sekar A, Subramanian K (2013). “A New Engineering Optimization Method: African Wild Dog Algorithm.” International Journal of Soft Computing, 8(3).
  • Dolphins: Dolphin Echolocation: Kaveh A, Farhoudi N (2013). “A new optimization method: Dolphin echolocation.” Advances in Engineering Software, 59, 53-70. doi: 10.1016/j.advengsoft.2013.03.004
  • Dolphins: Dolphin Partners: Shiqin Y, Jianjun J, Guangxing Y (2009). “A Dolphin Partner Optimization.” In 2009 WRI Global Congress on Intelligent Systems. doi: 10.1109/gcis.2009.464
  • Dragonflies: Mirjalili S (2015). “Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems.” Neural Computing and Applications, 27(4), 1053-1073. doi: 10.1007/s00521-015-1920-1
  • Duelists: Biyanto TR, Fibrianto HY, Nugroho G, Hatta AM, Listijorini E, Budiati T, Huda H (2016). “Duelist Algorithm: An Algorithm Inspired by How Duelist Improve Their Capabilities in a Duel.” In Tan Y, Shi Y, Niu B (eds.), Advances in Swarm Intelligence, 39-47. ISBN 978-3-319-41000-5.


  • Eagles: Yang X, Deb S (2010). “Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization.” In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 101-111. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-12538-6_9
  • Ecogeography: Zheng Y, Ling H, Xue J (2014). “Ecogeography-based optimization: Enhancing biogeography-based optimization with ecogeographic barriers and differentiations.” Computers & Operations Research, 50, 115-127. doi: 10.1016/j.cor.2014.04.013
  • Ecology: Parpinelli RS, Lopes HS (2011). “An eco-inspired evolutionary algorithm applied to numerical optimization.” In 2011 Third World Congress on Nature and Biologically Inspired Computing. doi: 10.1109/nabic.2011.6089631
  • Electromagnetism: Cuevas E, Oliva D, Zaldivar D, Pérez-Cisneros M, Sossa H (2012). “Circle detection using electro-magnetism optimization.” Information Sciences, 182(1), 40-55. doi: 10.1016/j.ins.2010.12.024
  • Elephants: Elephant Herds: Wang G, Deb S, dos S. Coelho L (2015). “Elephant Herding Optimization.” In 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI). doi: 10.1109/iscbi.2015.8
  • Elephants: Regular Elephants: Deb S, Fong S, Tian Z (2015). “Elephant Search Algorithm for optimization problems.” In 2015 Tenth International Conference on Digital Information Management (ICDIM). doi: 10.1109/icdim.2015.7381893
  • Emotions: Xu Y, Cui Z, Zeng J (2010). “Social Emotional Optimization Algorithm for Nonlinear Constrained Optimization Problems.” In Swarm, Evolutionary, and Memetic Computing, 583-590. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-17563-3_68
  • Epidemics: Huang G (2016). “Artificial infectious disease optimization: A SEIQR epidemic dynamic model-based function optimization~algorithm.” Swarm and Evolutionary Computation, 27, 31-67. doi: 10.1016/j.swevo.2015.09.007
  • Experts: Melo VVD (2014). “Kaizen programming.” In Proceedings of the 2014 conference on Genetic and evolutionary computation - GECCO \textquotesingle14. doi: 10.1145/2576768.2598264


  • FIFA World Cup: Razmjooy N, Khalilpour M, Ramezani M (2016). “A New Meta-Heuristic Optimization Algorithm Inspired by FIFA World Cup Competitions: Theory and Its Application in PID Designing for AVR System.” Journal of Control, Automation and Electrical Systems, 27(4), 419-440. doi: 10.1007/s40313-016-0242-6
  • Fireflies: Yang X (2009). “Firefly Algorithms for Multimodal Optimization.” In Stochastic Algorithms: Foundations and Applications, 169-178. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-04944-6_14
  • Fireworks: Tan Y, Zhu Y (2010). “Fireworks Algorithm for Optimization.” In Lecture Notes in Computer Science, 355-364. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-13495-1_44
  • Fish: Catfish: Chuang L, Tsai S, Yang C (2011). “Improved binary particle swarm optimization using catfish effect for feature selection.” Expert Systems with Applications, 38(10), 12699-12707. doi: 10.1016/j.eswa.2011.04.057
  • Fish: Cuttlefish: Eesa A, Abdulazeez A, Orman Z (2013). “Cuttlefish Algorithm - A Novel Bio-Inspired Optimization Algorithm.” International Journal of Scientific and Engineering Research, 4(9), 1978-1986.
  • Fish: Fish Schools: Filho CJAB, de Lima Neto FB, Lins AJCC, Nascimento AIS, Lima MP (2008). “A novel search algorithm based on fish school behavior.” In 2008 IEEE International Conference on Systems, Man and Cybernetics. doi: 10.1109/icsmc.2008.4811695
  • Fish: Fish Swarms: Li X, Qian J (2003). “Studies on Artificial Fish Swarm Optimization Algorithm Based on Decomposition and Coordination Techniques.” J Circuits Systems, 1, 1-6.
  • Flower Pollination: Yang X (2012). “Flower Pollination Algorithm for Global Optimization.” In Unconventional Computation and Natural Computation, 240-249. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-32894-7_27
  • Forests: Forest Regeneration: Moez H, Kaveh A, Taghizadieh N (2016). “Natural Forest Regeneration Algorithm: A New Meta-Heuristic.” Iranian Journal of Science and Technology, Transactions of Civil Engineering, 40(4), 311-326. doi: 10.1007/s40996-016-0042-z
  • Forests: Tree Survival: Ghaemi M, Feizi-Derakhshi M (2014). “Forest Optimization Algorithm.” Expert Systems with Applications, 41(15), 6676-6687. doi: 10.1016/j.eswa.2014.05.009
  • Fractals: Salimi H (2015). “Stochastic Fractal Search: A powerful metaheuristic algorithm.” Knowledge-Based Systems, 75, 1-18. doi: 10.1016/j.knosys.2014.07.025
  • Frogs: Japanese Tree Frogs: Hernández H, Blum C (2012). “Distributed graph coloring: an approach based on the calling behavior of Japanese tree frogs.” Swarm Intelligence, 6(2), 117-150. doi: 10.1007/s11721-012-0067-2
  • Frogs: Leaping: Eusuff MM, Lansey KE (2003). “Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm.” Journal of Water Resources Planning and Management, 129(3), 210-225. doi: 10.1061/(asce)0733-9496(2003)129:3(210)
  • Fruit Fly: Pan W (2012). “A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example.” Knowledge-Based Systems, 26, 69-74. doi: 10.1016/j.knosys.2011.07.001


  • Galaxies: Hosseini HS (2011). “Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation.” International Journal of Computational Science and Engineering, 6(1/2), 132. doi: 10.1504/ijcse.2011.041221
  • Gas Molecules: Brownian Motion: Abdechiri M, Meybodi MR, Bahrami H (2013). “Gases Brownian Motion Optimization: an Algorithm for Optimization (GBMO).” Applied Soft Computing, 13(5), 2932-2946. doi: 10.1016/j.asoc.2012.03.068
  • Gas Molecules: Kinetic Energy: Moein S, Logeswaran R (2014). “KGMO: A swarm optimization algorithm based on the kinetic energy of gas molecules.” Information Sciences, 275, 127-144. doi: 10.1016/j.ins.2014.02.026
  • Gene Expression: Ferreira C (2002). “Gene Expression Programming in Problem Solving.” In Soft Computing and Industry, 635-653. Springer London. doi: 10.1007/978-1-4471-0123-9_54
  • General Relativity: Beiranvand H, Rokrok E (2015). “General Relativity Search Algorithm: A Global Optimization Approach.” International Journal of Computational Intelligence and Applications, 14(03), 1550017. doi: 10.1142/s1469026815500170
  • Genes: Holland J (1975). Adaptation in Natural and Artificial Systems, An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press.
  • Glow Worms: Krishnanand KN, Ghose D (2008). “Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions.” Swarm Intelligence, 3(2), 87-124. doi: 10.1007/s11721-008-0021-5
  • Grasshoppers: Saremi S, Mirjalili S, Lewis A (2017). “Grasshopper Optimisation Algorithm: Theory and application.” Advances in Engineering Software, 105, 30-47. doi: 10.1016/j.advengsoft.2017.01.004
  • Gravitation: Rashedi E, Nezamabadi-pour H, Saryazdi S (2009). “GSA: A Gravitational Search Algorithm.” Information Sciences, 179(13), 2232-2248. doi: 10.1016/j.ins.2009.03.004
  • Great Deluge: Dueck G (1993). “New Optimization Heuristics: The Great Deluge and Record to Record Travel.” Journal of Computational Physics, 104(1), 86-92. doi: 10.1006/jcph.1993.1010
  • Grenades: Ahrari A, Atai AA (2010). “Grenade Explosion Method—A novel tool for optimization of multimodal functions.” Applied Soft Computing, 10(4), 1132-1140. doi: 10.1016/j.asoc.2009.11.032
  • Group Counselling: Eita MA, Fahmy MM (2009). “Group Counseling Optimization: A Novel Approach.” In Research and Development in Intelligent Systems XXVI, 195-208. Springer London. doi: 10.1007/978-1-84882-983-1_14
  • Group Decision-Making: Zhang Q, Wang R, Yang J, Ding K, Li Y, Hu J (2017). “Collective decision optimization algorithm: A new heuristic optimization method.” Neurocomputing, 221, 123-137. doi: 10.1016/j.neucom.2016.09.068


  • Heart: Hatamlou A (2014). “Heart: a novel optimization algorithm for cluster analysis.” Progress in Artificial Intelligence, 2(2-3), 167-173. doi: 10.1007/s13748-014-0046-5
  • Hoopoe: El-Dosuky M, El-Bassiouny A, Hamza T, Rashad M (2012). “New Hoopoe Heuristic Optimization.” International Journal of Science and Advanced Technology, 2(9), 85-90.
  • Hyenas: Dhiman G, Kumar V (2017). “Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications.” Advances in Engineering Software, 114, 48-70. doi: 10.1016/j.advengsoft.2017.05.014


  • Interior Design: Gandomi AH (2014). “Interior search algorithm (ISA): A novel approach for global optimization.” ISA Transactions, 53(4), 1168-1183. doi: 10.1016/j.isatra.2014.03.018
  • Invasive Weeds: Mehrabian A, Lucas C (2006). “A novel numerical optimization algorithm inspired from weed colonization.” Ecological Informatics, 1(4), 355-366. doi: 10.1016/j.ecoinf.2006.07.003
  • Ions: Javidy B, Hatamlou A, Mirjalili S (2015). “Ions motion algorithm for solving optimization problems.” Applied Soft Computing, 32, 72-79. doi: 10.1016/j.asoc.2015.03.035


  • Jaguars: Chen C, Tsai Y, Liu I, Lai C, Yeh Y, Kuo S, Chou Y (2015). “A Novel Metaheuristic: Jaguar Algorithm with Learning Behavior.” In 2015 IEEE International Conference on Systems, Man, and Cybernetics. doi: 10.1109/smc.2015.282


  • Keshtel Duck: Hajiaghaei-Keshteli M, Aminnayeri M (2014). “Solving the integrated scheduling of production and rail transportation problem by Keshtel algorithm.” Applied Soft Computing, 25, 184-203. doi: 10.1016/j.asoc.2014.09.034
  • Kidneys: Jaddi NS, Alvankarian J, Abdullah S (2017). “Kidney-inspired algorithm for optimization problems.” Communications in Nonlinear Science and Numerical Simulation, 42, 358-369. doi: 10.1016/j.cnsns.2016.06.006
  • Krill: Gandomi AH, Alavi AH (2012). “Krill herd: A new bio-inspired optimization algorithm.” Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. doi: 10.1016/j.cnsns.2012.05.010


  • Ladybirds: Wang P, Zhu Z, Huang S (2013). “Seven-Spot Ladybird Optimization: A Novel and Efficient Metaheuristic Algorithm for Numerical Optimization.” The Scientific World Journal, 2013, 1-11. doi: 10.1155/2013/378515
  • Lightning: Shareef H, Ibrahim AA, Mutlag AH (2015). “Lightning search algorithm.” Applied Soft Computing, 36, 315-333. doi: 10.1016/j.asoc.2015.07.028
  • Lions: Wang B, Jin X, Cheng B (2012). “Lion pride optimizer: An optimization algorithm inspired by lion pride behavior.” Science China Information Sciences, 55(10), 2369-2389. doi: 10.1007/s11432-012-4548-0
  • Locusts: Chen S (2009). “An Analysis of Locust Swarms on Large Scale Global Optimization Problems.” In Artificial Life: Borrowing from Biology, 211-220. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-10427-5_21


  • Markets: Ghorbani N, Babaei E (2014). “Exchange market algorithm.” Applied Soft Computing, 19, 177-187. doi: 10.1016/j.asoc.2014.02.006
  • Mine Explosions: Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012). “Mine blast algorithm for optimization of truss structures with discrete variables.” Computers & Structures, 102-103, 49-63. doi: 10.1016/j.compstruc.2012.03.013
  • Monkeys: Monkey Foraging: Mucherino A, Seref O, Seref O, Kundakcioglu OE, Pardalos P (2007). “Monkey search: a novel metaheuristic search for global optimization.” In AIP Conference Proceedings. doi: 10.1063/1.2817338
  • Monkeys: Spider Monkeys: Bansal JC, Sharma H, Jadon SS, Clerc M (2014). “Spider Monkey Optimization algorithm for numerical optimization.” Memetic Computing, 6(1), 31-47. doi: 10.1007/s12293-013-0128-0
  • Moths: Mirjalili S (2015). “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm.” Knowledge-Based Systems, 89, 228-249. doi: 10.1016/j.knosys.2015.07.006
  • Mountain Climbers: Zhang LM, Dahlmann C, Zhang Y (2009). “Human-Inspired Algorithms for continuous function optimization.” In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. doi: 10.1109/icicisys.2009.5357838
  • Multiverse: Mirjalili S, Mirjalili SM, Hatamlou A (2015). “Multi-Verse Optimizer: a nature-inspired algorithm for global optimization.” Neural Computing and Applications, 27(2), 495-513. doi: 10.1007/s00521-015-1870-7
  • Mushroom Reproduction: Bidar M, Kanan HR, Mouhoub M, Sadaoui S (2018). “Mushroom Reproduction Optimization (MRO): A Novel Nature-Inspired Evolutionary Algorithm.” In 2018 IEEE Congress on Evolutionary Computation.
  • Musicians: Geem ZW, Kim JH, Loganathan G (2001). “A New Heuristic Optimization Algorithm: Harmony Search.” SIMULATION, 76(2), 60-68. doi: 10.1177/003754970107600201



  • Optics: Kashan AH (2015). “A new metaheuristic for optimization: Optics inspired optimization (OIO).” Computers & Operations Research, 55, 99-125. doi: 10.1016/j.cor.2014.10.011


  • Paddy Fields: Premaratne U, Samarabandu J, Sidhu T (2009). “A new biologically inspired optimization algorithm.” In 2009 International Conference on Industrial and Information Systems (ICIIS). doi: 10.1109/iciinfs.2009.5429852
  • Parliamentarist Elections: Borji A (2007). “A New Global Optimization Algorithm Inspired by Parliamentary Political Competitions.” In MICAI 2007: Advances in Artificial Intelligence, 61-71. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-76631-5_7
  • Penguins: Gheraibia Y, Moussaoui A (2013). “Penguins Search Optimization Algorithm (PeSOA).” In Recent Trends in Applied Artificial Intelligence, 222-231. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-38577-3_23
  • Peral Hunting: Chan CY, Xue F, Ip WH, Cheung CF (2012). “A Hyper-Heuristic Inspired by Pearl Hunting.” In Lecture Notes in Computer Science, 349-353. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-34413-8_26
  • Plants: Plant Growth: Li J, Cui Z, Shi Z (2012). “An Improved Artificial Plant Optimization Algorithm for Coverage Problem in WSN.” Sensor Letters, 10(8), 1874-1878. doi: 10.1166/sl.2012.2627
  • Plants: Plant Intelligence: Akyol S, Alatas B (2016). “Plant intelligence based metaheuristic optimization algorithms.” Artificial Intelligence Review, 47(4), 417-462. doi: 10.1007/s10462-016-9486-6
  • Plants: Plant Propagation: Sulaiman M, Salhi A, Selamoglu BI, Kirikchi OB (2014). “A Plant Propagation Algorithm for Constrained Engineering Optimisation Problems.” Mathematical Problems in Engineering, 2014, 1-10. doi: 10.1155/2014/627416
  • Political Imperialism: Atashpaz-Gargari E, Lucas C (2007). “Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition.” In 2007 IEEE Congress on Evolutionary Computation. doi: 10.1109/cec.2007.4425083
  • Political Strategies: Melvix JL (2014). “Greedy Politics Optimization: Metaheuristic inspired by political strategies adopted during state assembly elections.” In 2014 IEEE International Advance Computing Conference (IACC). doi: 10.1109/iadcc.2014.6779490


  • Quantum Superposition: Saire JEC, Tupac VYJ (2015). “An approach to real-coded quantum inspired evolutionary algorithm using particles filter.” In 2015 Latin America Congress on Computational Intelligence (LA-CCI). doi: 10.1109/la-cci.2015.7435984


  • Ravens: Torabi S, Safi-Esfahani F (2017). “Improved Raven Roosting Optimization algorithm (IRRO).” Swarm and Evolutionary Computation. doi: 10.1016/j.swevo.2017.11.006
  • Rays of Light: Kaveh A, Khayatazad M (2012). “A new meta-heuristic method: Ray Optimization.” Computers & Structures, 112-113, 283-294. doi: 10.1016/j.compstruc.2012.09.003
  • Reincarnation: Sharma A (2010). “A new optimizing algorithm using reincarnation concept.” In 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI). doi: 10.1109/cinti.2010.5672231
  • Rhinoceros: Deb S, Tian Z, Fong S, Tang R, Wong R, Dey N (2018). “Solving permutation flow-shop scheduling problem by rhinoceros search algorithm.” Soft Computing. doi: 10.1007/s00500-018-3075-3
  • River Formation: Rabanal P, Rodr'\iguez I, Rubio F (2007). “Using River Formation Dynamics to Design Heuristic Algorithms.” In Lecture Notes in Computer Science, 163-177. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-73554-0_16
  • Roach Infestations: Havens TC, Spain CJ, Salmon NG, Keller JM (2008). “Roach Infestation Optimization.” In 2008 IEEE Swarm Intelligence Symposium. doi: 10.1109/sis.2008.4668317
  • Roots: Merrikh-Bayat F (2015). “The runner-root algorithm: A metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature.” Applied Soft Computing, 33, 292-303. doi: 10.1016/j.asoc.2015.04.048


  • Salmon Migrations: Mozaffari A, Fathi A, Behzadipour S (2012). “The great salmon run: a novel bio-inspired algorithm for artificial system design and optimisation.” International Journal of Bio-Inspired Computation, 4(5), 286-301.
  • Salp Planktons: Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017). “Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems.” Advances in Engineering Software, 114, 163-191. doi: 10.1016/j.advengsoft.2017.07.002
  • Scientific Method: Felipe D, Goldbarg EFG, Goldbarg MC (2014). “Scientific algorithms for the Car Renter Salesman Problem.” In 2014 IEEE Congress on Evolutionary Computation (CEC). doi: 10.1109/cec.2014.6900556
  • See-See Partridges: Omidvar R, Parvin H, Rad F (2015). “SSPCO Optimization Algorithm (See-See Partridge Chicks Optimization).” In 2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI). doi: 10.1109/micai.2015.22
  • Sharks: Abedinia O, Amjady N, Ghasemi A (2014). “A new metaheuristic algorithm based on shark smell optimization.” Complexity, 21(5), 97-116. doi: 10.1002/cplx.21634
  • Sheep Flocks: Kim H, Ahn B (2001). “A new evolutionary algorithm based on sheep flocks heredity model.” In 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233). doi: 10.1109/pacrim.2001.953683
  • Small World: Du H, Wu X, Zhuang J (2006). “Small-World Optimization Algorithm for Function Optimization.” In Lecture Notes in Computer Science, 264-273. Springer Berlin Heidelberg. doi: 10.1007/11881223_33
  • Soccer Games: Purnomo HD, Wee H (2013). “Soccer Game Optimization.” In Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance, 386-420. IGI Global. doi: 10.4018/978-1-4666-2086-5.ch013
  • Social Behavior: Ray T, Liew K (2003). “Society and civilization: an optimization algorithm based on the simulation of social behavior.” IEEE Transactions on Evolutionary Computation, 7(4), 386-396. doi: 10.1109/tevc.2003.814902
  • Social Engineering: Fard AMF, Hajiaghaei-Keshteli M (2017). “Social Engineering Optimization (SEO); A New Single-Solution Meta-heuristic Inspired by Social Engineering.” In International Conference on Industrial Engineering.
  • Social Spiders: Cuevas E, Cienfuegos M, Zald'\ivar D, Pérez-Cisneros M (2013). “A swarm optimization algorithm inspired in the behavior of the social-spider.” Expert Systems with Applications, 40(16), 6374-6384. doi: 10.1016/j.eswa.2013.05.041
  • Sonar: Tzanetos A, Dounias G (2017). “A New Metaheuristic Method for Optimization: Sonar Inspired Optimization.” In Boracchi G, Iliadis L, Jayne C, Likas A (eds.), Engineering Applications of Neural Networks, 417-428. ISBN 978-3-319-65172-9.
  • Sperm: Raouf OA, Hezam IM (2017). “Sperm motility algorithm: a novel metaheuristic approach for global optimisation.” International Journal of Operational Research, 28(2), 143. doi: 10.1504/ijor.2017.10002079
  • Spirals: Tamura K, and Keiichiro Yasuda (2011). “Spiral Dynamics Inspired Optimization.” Journal of Advanced Computational Intelligence and Intelligent Informatics, 15(8), 1116-1122. doi: 10.20965/jaciii.2011.p1116
  • Sports Championships: Kashan AH (2009). “League Championship Algorithm: A New Algorithm for Numerical Function Optimization.” In 2009 International Conference of Soft Computing and Pattern Recognition. doi: 10.1109/socpar.2009.21
  • Squirrels: Flying Squirrels: Jain M, Singh V, Rani A (2018). “A novel nature-inspired algorithm for optimization: Squirrel search algorithm.” Swarm and Evolutionary Computation. doi: 10.1016/j.swevo.2018.02.013
  • States of Matter: Cuevas E, Echavarr'\ia A, Ram'\irez-Ortegón MA (2013). “An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation.” Applied Intelligence, 40(2), 256-272. doi: 10.1007/s10489-013-0458-0
  • Swallows: Neshat M, Sepidnam G, Sargolzaei M (2012). “Swallow swarm optimization algorithm: a new method to optimization.” Neural Computing and Applications, 23(2), 429-454. doi: 10.1007/s00521-012-0939-9
  • Symbiotic Organisms: Cheng M, Prayogo D (2014). “Symbiotic Organisms Search: A new metaheuristic optimization algorithm.” Computers & Structures, 139, 98-112. doi: 10.1016/j.compstruc.2014.03.007


  • Teachers: Rao R, Savsani V, Vakharia D (2011). “Teaching\textendashlearning-based optimization: A novel method for constrained mechanical design optimization problems.” Computer-Aided Design, 43(3), 303-315. doi: 10.1016/j.cad.2010.12.015
  • Termites: Hedayatzadeh R, Salmassi FA, Keshtgari M, Akbari R, Ziarati K (2010). “Termite colony optimization: A novel approach for optimizing continuous problems.” In 2010 18th Iranian Conference on Electrical Engineering. doi: 10.1109/iraniancee.2010.5507009
  • Troops of Soldiers: Chen T (2009). “A Simulative Bionic Intelligent Optimization Algorithm: Artificial Searching Swarm Algorithm and Its Performance Analysis.” In 2009 International Joint Conference on Computational Sciences and Optimization. doi: 10.1109/cso.2009.183
  • Tug of War: Kaveh A, Zolghadr A (2016). “A novel meta-heuristic algorithm: tug of war optimization.” Iran University of Science & Technology, 6(4), 469-492.



  • Vaccination: Tayeb FB, Bessedik M, Benbouzid M, Cheurfi H, Blizak A (2017). “Research on Permutation Flow-shop Scheduling Problem based on Improved Genetic Immune Algorithm with vaccinated offspring.” Procedia Computer Science, 112, 427-436. doi: 10.1016/j.procs.2017.08.055
  • Vehicles: Savsani P, Savsani V (2016). “Passing vehicle search (PVS): A novel metaheuristic algorithm.” Applied Mathematical Modelling, 40(5-6), 3951-3978. doi: 10.1016/j.apm.2015.10.040
  • Vibrating Particles: Kaveh A, Ghazaan MI (2016). “Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints.” Acta Mechanica, 228(1), 307-322. doi: 10.1007/s00707-016-1725-z
  • Virus: Swine Flu: Pattnaik S, Bakwad K, Sohi B, Ratho R, Devi S (2013). “Swine Influenza Models Based Optimization (SIMBO).” Applied Soft Computing, 13(1), 628-653. doi: 10.1016/j.asoc.2012.07.010
  • Viruses: Virulence: Jaderyan M, Khotanlou H (2016). “Virulence Optimization Algorithm.” Applied Soft Computing, 43, 596-618. doi: 10.1016/j.asoc.2016.02.038
  • Viruses: Virus Colonies: Li MD, Zhao H, Weng XW, Han T (2016). “A novel nature-inspired algorithm for optimization: Virus colony search.” Advances in Engineering Software, 92, 65-88. doi: 10.1016/j.advengsoft.2015.11.004
  • Viruses: Virus Replication: Cortés P, Garc'\ia JM, Muñuzuri J, Onieva L (2008). “Viral systems: A new bio-inspired optimisation approach.” Computers & Operations Research, 35(9), 2840-2860. doi: 10.1016/j.cor.2006.12.018
  • Volleyball Leagues: Moghdani R, Salimifard K (2018). “Volleyball Premier League Algorithm.” Applied Soft Computing, 64, 161-185. doi: 10.1016/j.asoc.2017.11.043
  • Vortices: Doğan B, Ölmez T (2015). “A new metaheuristic for numerical function optimization: Vortex Search algorithm.” Information Sciences, 293, 125-145. doi: 10.1016/j.ins.2014.08.053
  • Vultures: Sur C, Sharma S, Shukla A (2013). “Egyptian Vulture Optimization Algorithm \textendash A New Nature Inspired Meta-heuristics for Knapsack Problem.” In The 9th International Conference on Computing and InformationTechnology (IC2IT2013), 227-237. Springer Berlin Heidelberg. doi: 10.1007/978-3-642-37371-8_26


  • Wasps: Pinto P, Runkler TA, Sousa JM (2005). “Wasp swarm optimization of logistic systems.” In Adaptive and Natural Computing Algorithms, 264-267. Springer.
  • Water: Hydrological Cycle: Wedyan A, Whalley J, Narayanan A (2017). “Hydrological Cycle Algorithm for Continuous Optimization Problems.” Journal of Optimization, 2017, 1-25. doi: 10.1155/2017/3828420
  • Water: Intelligent Water Drops: Hosseini HS (2009). “The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm.” International Journal of Bio-Inspired Computation, 1(1/2), 71. doi: 10.1504/ijbic.2009.022775
  • Water: Rain: Kaboli SHA, Selvaraj J, Rahim N (2017). “Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems.” Journal of Computational Science, 19, 31-42. doi: 10.1016/j.jocs.2016.12.010
  • Water: Rain Drops: Jiang Q, Wang L, Hei X, Fei R, Yang D, Zou F, Li H, Cao Z, Lin Y (2014). “Optimal approximation of stable linear systems with a novel and efficient optimization algorithm.” In 2014 IEEE Congress on Evolutionary Computation (CEC). doi: 10.1109/cec.2014.6900366
  • Water: Water Cycle: Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012). “Water cycle algorithm \textendash A novel metaheuristic optimization method for solving constrained engineering optimization problems.” Computers & Structures, 110-111, 151-166. doi: 10.1016/j.compstruc.2012.07.010
  • Water: Water Evaporation: Kaveh A, Bakhshpoori T (2016). “Water Evaporation Optimization: A novel physically inspired optimization algorithm.” Computers & Structures, 167, 69-85. doi: 10.1016/j.compstruc.2016.01.008
  • Water: Water Flow: Tran TH, Ng KM (2010). “A water-flow algorithm for flexible flow shop scheduling with~intermediate buffers.” Journal of Scheduling, 14(5), 483-500. doi: 10.1007/s10951-010-0205-x
  • Water: Water Wave: Zheng Y (2015). “Water wave optimization: A new nature-inspired metaheuristic.” Computers & Operations Research, 55, 1-11. doi: 10.1016/j.cor.2014.10.008
  • Whales: Killer Whales: Biyanto TR, Matradji, Irawan S, Febrianto HY, Afdanny N, Rahman AH, Gunawan KS, Pratama JA, Bethiana TN (2017). “Killer Whale Algorithm: An Algorithm Inspired by the Life of Killer Whale.” Procedia Computer Science, 124, 151-157. doi: 10.1016/j.procs.2017.12.141
  • Whales: Regular Whales: Mirjalili S, Lewis A (2016). “The Whale Optimization Algorithm.” Advances in Engineering Software, 95, 51-67. doi: 10.1016/j.advengsoft.2016.01.008
  • Whales: Sperm Whales: Ebrahimi A, Khamehchi E (2016). “Sperm whale algorithm: An effective metaheuristic algorithm for production optimization problems.” Journal of Natural Gas Science and Engineering, 29, 211-222. doi: 10.1016/j.jngse.2016.01.001
  • Wind: Bayraktar Z, Komurcu M, Werner DH (2010). “Wind Driven Optimization (WDO): A novel nature-inspired optimization algorithm and its application to electromagnetics.” In 2010 IEEE Antennas and Propagation Society International Symposium. doi: 10.1109/aps.2010.5562213
  • Wolves: Grey Wolves: Mirjalili S, Mirjalili SM, Lewis A (2014). “Grey Wolf Optimizer.” Advances in Engineering Software, 69, 46-61. doi: 10.1016/j.advengsoft.2013.12.007
  • Wolves: Wolves: Tang R, Fong S, Yang X, Deb S (2012). “Wolf search algorithm with ephemeral memory.” In Seventh International Conference on Digital Information Management (ICDIM 2012). doi: 10.1109/icdim.2012.6360147
  • Worms: Arnaout J (2014). “Worm optimization: a novel optimization algorithm inspired by C. Elegans.” In Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, 2499-2505.



  • Yin-Yang Pairs: Punnathanam V, Kotecha P (2016). “Yin-Yang-pair Optimization: A novel lightweight optimization algorithm.” Engineering Applications of Artificial Intelligence, 54, 62-79. doi: 10.1016/j.engappai.2016.04.004


  • Zombies: Nguyen HT, Bhanu B (2012). “Zombie Survival Optimization: A swarm intelligence algorithm inspired by zombie foraging.” In Pattern Recognition (ICPR), 2012 21st International Conference on, 987-990. IEEE.


("the Zoo Keepers")


(at least one contribution to the bestiary - in terms of adding a method to the list, not inventing it!)

  • Adré Steyn - University of Stellenbosch, South Africa
  • Alberto Franzin - Université Libre de Bruxelles, Belgium
  • André Maravilha - UFMG, Brazil
  • Carlos Fonseca - University of Coimbra, Portugal
  • Ciniro Nametala - UFMG, Brazil
  • Eduardo Hauck - UFJF, Brazil
  • Fabio Daolio - University of Stirling, Scotland UK
  • Fernanda Takahashi - UFMG, Brazil
  • Fernando Otero - University of Kent, England UK
  • Fillipe Goulart - UFMG, Brazil
  • Federico Pagnozzi - Université Libre de Bruxelles, Belgium
  • Iago A. de Carvalho - UFMG, Brazil
  • Iztok Fister Jr. - University of Maribor, Slovenia
  • Jakub Grabski - Poznan University of Technology, Poland
  • Kenneth Sörensen - University of Antwerp, Belgium
  • Lars Magnus Hvattum - Molde University College, Norway
  • Marc Sevaux - Université de Bretagne-Sud, France
  • Marco Mollinetti - University of Tsukuba, Japan
  • Marco Pranzo - Università di Siena, Italy
  • Marcus Ritt - UFRGS, Brazil
  • Nadarajen Veerapen - University of Stirling, Scotland UK
  • Robin Purshouse - University of Sheffield, England UK
  • Rubén Ruiz - Universitat Politècnica de València, Spain
  • Ruud Koot - Universiteit Utrecht, The Netherlands
  • Sara Silva - University of Lisbon
  • Sergio A. Rojas - Universidad Distrital de Bogotá, Colombia
  • Silvano Martello - University of Bologna
  • Stefan Voß - Universität Hamburg, Germany
  • Thomas Jacob Riis Stidsen - Danmarks Tekniske Universitet, Denmark
  • Thomas Stützle - Université Libre de Bruxelles, Belgium
  • James Brookhouse - University of Kent, England UK

How to Contribute

If you know a paper that should belong to this list, please send an e-mail to either Claus or Felipe, or report an issue on our Github repo. The criteria for inclusion are quite simple:

  1. the work must be in a peer reviewed publication (journal or conference);
  2. the title or abstract must name the algorithm after the natural (or supernatural) metaphor on which it was based;

It is also important to highlight that only the earliest known mention for each metaphor is included.

More Info:

  • If you liked this list, you should read the paper "Metaheuristic: The Metaphor Exposed", by Kenneth Söresen
  • Need inspiration for your next Bioinspired algorithm? Check Marco Scirea and Julian Togelius' Daily Bio-heuristics bot.
  • Some of the algorithms listed here were found in a list compiled by Iztok Fister Jr. et al., which is available here. Iztok also recently published this paper reflecting on the proliferation of metaphors in EC research.
  • A fantastic parody of this whole metaphor craze can be read here. Highly recommended!


This work is licensed under the Creative Commons CC BY-NC-SA 4.0 license (Attribution Non-Commercial Share Alike International License version 4.0): http://creativecommons.org/licenses/by-nc-sa/4.0/