# fellowswift/SwiftChallenges

Add the playground for the first challenge

David Cordero committed Jan 19, 2016
1 parent 6ccda71 commit 756e267202d0c3eefa1e8b50cd9b9c2a6fa6f09f
 @@ -0,0 +1,38 @@ /*: ## Challenge 1: **The 3n+1 problem** Consider the following algorithm to generate a sequence of numbers. Start with an integer n. If n is even, divide by 2. If n is odd, multiply by 3 and add 1. Repeat this process with the new value of n, terminating when n = 1. For example, the following sequence of numbers will be generated for n = 22: 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 It is conjectured (but not yet proven) that this algorithm will terminate at n = 1 for every integer n. Still, the conjecture holds for all integers up to at least 1,000,000. For an input n, the cycle-length of n is the number of numbers generated up to and including the 1. In the example above, the cycle length of 22 is 16. Given any two numbers i and j, you are to determine the maximum cycle length over all numbers between i and j, including both endpoints. ## Input The input will consist in a couple of integers. All of them will be less than 1,000,000 and greater than 0. ## Output For each pair of input integers i and j, output i, j in the same order in which they appeared in the input and then the maximum cycle length for integers between and including i and j. These three numbers should be separated by one space, with all three numbers on one line and with one line of output for each line of input. ## Sample Inputs 1 10 100 200 201 210 900 1000 ## Sample Outputs 1 10 20 100 200 125 201 210 89 900 1000 174 */ func challenge_1(i: Int, j: Int) -> Int { <#Write here your solution#> }
 @@ -0,0 +1,4 @@