Skip to content
Permalink
release
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
function ft_write_data(filename, dat, varargin)
% FT_WRITE_DATA exports electrophysiological data such as EEG to a file.
%
% Use as
% ft_write_data(filename, dat, ...)
%
% The specified filename can contain the filename extension. If it has no filename
% extension not, it will be added automatically.
%
% Additional options should be specified in key-value pairs and can be
% 'header' = header structure that describes the data, see FT_READ_HEADER
% 'event' = event structure that corresponds to the data, see FT_READ_EVENT
% 'chanindx' = 1xN array, for selecting a subset of channels from header and data
% 'dataformat' = string, see below
% 'append' = boolean, not supported for all formats
%
% The supported dataformats for writing are
% edf
% gdf
% anywave_ades
% brainvision_eeg
% neuralynx_ncs
% neuralynx_sdma
% plexon_nex
% fcdc_matbin
% fcdc_mysql
% fcdc_buffer
% flac, m4a, mp4, oga, ogg, wav (audio formats)
% matlab
% homer_nirs
% snirf
%
% For EEG data, the input data is assumed to be scaled in microvolt.
% For NIRS data, the input data is assumed to represent optical densities.
%
% See also FT_READ_HEADER, FT_READ_DATA, FT_READ_EVENT, FT_WRITE_EVENT
% Copyright (C) 2007-2021, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
global data_queue % for fcdc_global
global header_queue % for fcdc_global
global db_blob % for fcdc_mysql
if isempty(db_blob)
db_blob = 0;
end
% get the options
append = ft_getopt(varargin, 'append', false);
nbits = ft_getopt(varargin, 'nbits', 16); % for audio
chanindx = ft_getopt(varargin, 'chanindx');
hdr = ft_getopt(varargin, 'header');
evt = ft_getopt(varargin, 'event');
dataformat = ft_getopt(varargin, 'dataformat');
if isempty(dataformat)
% only do the autodetection if the format was not specified
dataformat = ft_filetype(filename);
end
if startsWith(dataformat, 'audio_')
% support for audio formats is implemented in a generic fashion
dataformat = dataformat(7:end);
end
% convert 'yes' or 'no' string into boolean
append = istrue(append);
% ensure that the directory exists if we want to write to a file
if ~ismember(dataformat, {'empty', 'fcdc_global', 'fcdc_buffer', 'fcdc_mysql'})
isdir_or_mkdir(fileparts(filename));
end
% determine the data size
[nchans, nsamples] = size(dat);
% ensure that the header is (reasonably) complete
if ~isfield(hdr, 'nChans')
if isfield(hdr, 'label')
hdr.nChans = length(hdr.label);
else
hdr.nChans = nchans;
end
end
if ~isfield(hdr, 'label')
hdr.label = arrayfun(@num2str, 1:hdr.nChans, 'UniformOutput', false)';
end
if ~isfield(hdr, 'chantype')
% use a helper function which has some built in intelligence
hdr.chantype = ft_chantype(hdr);
end
if ~isfield(hdr, 'chanunit')
% use a helper function which has some built in intelligence
hdr.chanunit = ft_chanunit(hdr);
end
if ~isempty(chanindx)
% the header (and possibly the data) correspond to the original multichannel file
hdr.label = hdr.label(chanindx);
hdr.chantype = hdr.chantype(chanindx);
hdr.chanunit = hdr.chanunit(chanindx);
hdr.nChans = length(chanindx);
if length(chanindx)==nchans
% assume that the data already represents the desired subset of channels
else
% assume that the data corresponds to the original multichannel file
dat = dat(chanindx,:);
end
end
switch dataformat
case 'empty'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% just pretend that we are writing the data, this is only for debugging
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[numC, numS] = size(dat);
ft_info('Pretending to write %i samples from %i channels...\n',numS,numC);
% Insert a small delay to make this more realitic for testing purposes
% The time for writing to an actual location will differ and depend on
% the amount of data
pause(0.001);
case 'fcdc_global'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% store it in a global variable, this is only for debugging
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(evt)
ft_error('writing events is not supported here, please see FT_WRITE_EVENT');
end
if ~isempty(hdr)
header_queue = hdr;
end
if isempty(data_queue) || ~append
data_queue = dat;
else
data_queue = cat(2, data_queue, dat);
end
case 'fcdc_buffer'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% write to a network transparent buffer for realtime analysis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(evt)
ft_error('writing events is not supported here, please see FT_WRITE_EVENT');
end
[host, port] = filetype_check_uri(filename);
type = {
'char'
'uint8'
'uint16'
'uint32'
'uint64'
'int8'
'int16'
'int32'
'int64'
'single'
'double'
};
wordsize = {
1 % 'char'
1 % 'uint8'
2 % 'uint16'
4 % 'uint32'
8 % 'uint64'
1 % 'int8'
2 % 'int16'
4 % 'int32'
8 % 'int64'
4 % 'single'
8 % 'double'
};
% this should only be done the first time
if ~append && ~isempty(hdr)
% reformat the header into a buffer-compatible format
packet.fsample = hdr.Fs;
packet.nchans = hdr.nChans;
packet.nsamples = 0;
packet.nevents = 0;
packet.data_type = find(strcmp(type, class(dat))) - 1; % zero-offset
if isfield(hdr,'label') && iscell(hdr.label)
packet.channel_names = hdr.label;
end
if isfield(hdr,'siemensap')
if isa(hdr.siemensap, 'uint8')
packet.siemensap = hdr.siemensap;
else
% try
% packet.siemensap = matlab2sap(hdr.siemensap);
% catch
warning 'Ignoring field "siemensap"';
% end
end
end
if isfield(hdr,'nifti_1')
if isa(hdr.nifti_1, 'uint8')
packet.nifti_1 = hdr.nifti_1;
else
try
packet.nifti_1 = encode_nifti1(hdr.nifti_1);
catch
warning 'Ignoring field "nifti_1"';
end
end
end
if isfield(hdr,'ctf_res4')
if isa(hdr.ctf_res4, 'uint8')
packet.ctf_res4 = hdr.ctf_res4;
else
warning 'Ignoring non-uint8 field "ctf_res4"';
end
end
% try to put_hdr and initialize if necessary
try
% try writing the packet
buffer('put_hdr', packet, host, port);
catch
if contains(lasterr, 'Buffer size N must be an integer-valued scalar double.')
% this happens if the MATLAB75/toolbox/signal/signal/buffer
% function is used instead of the FieldTrip buffer
ft_error('the FieldTrip buffer mex file was not found on your path, it should be in fieldtrip/fileio/private');
elseif contains(lasterr, 'failed to create socket') && (strcmp(host, 'localhost') || strcmp(host, '127.0.0.1'))
% start a local instance of the TCP server
ft_warning('starting FieldTrip buffer on %s:%d', host, port);
buffer('tcpserver', 'init', host, port);
pause(1);
% rewrite the packet until success
success = false;
while ~success
try
% it may take some time before the TCP server is fully initialized
% try writing the packet again
buffer('put_hdr', packet, host, port);
success = true;
catch
success = false;
end
end
end % if strfind...
end % try
end % writing header
if ~isempty(dat)
MAXNUMSAMPLE = 600000; % see buffer.h
if size(dat,2)>MAXNUMSAMPLE
ft_error('number of samples exceeds the size of the ring buffer');
end
% reformat the data into a buffer-compatible format
packet.nchans = size(dat,1);
packet.nsamples = size(dat,2);
packet.data_type = find(strcmp(type, class(dat))) - 1; % zero-offset
packet.bufsize = numel(dat) * wordsize{strcmp(type, class(dat))};
packet.buf = dat;
buffer('put_dat', packet, host, port);
end
case {'brainvision_eeg', 'brainvision_vhdr'}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% combination of *.eeg and *.vhdr file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not yet supported for this data format');
end
% the header should at least contain the following fields
% hdr.label
% hdr.nChans
% hdr.Fs
write_brainvision_eeg(filename, hdr, dat, evt);
case 'fcdc_matbin'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% multiplexed data in a *.bin file (ieee-le, 64 bit floating point values),
% accompanied by a MATLAB V6 file containing the header
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[path, file, ext] = fileparts(filename);
headerfile = fullfile(path, [file '.mat']);
datafile = fullfile(path, [file '.bin']);
if append && exist(headerfile, 'file') && exist(datafile, 'file')
% read the existing header and perform a sanity check
old = load(headerfile);
assert(old.hdr.nChans==size(dat,1));
% update the existing header
hdr = old.hdr;
hdr.nSamples = hdr.nSamples + nsamples;
if isfield(old, 'event')
event = old.event;
else
event = [];
end
% append the existing and the new events
event = appendstruct(event, evt);
save(headerfile, 'hdr', 'event', '-v6');
% update the data file
fid = fopen_or_error(datafile,'ab','ieee-le');
fwrite(fid, dat, hdr.precision);
fclose(fid);
else
hdr.nSamples = nsamples;
hdr.nTrials = 1;
if ~isfield(hdr, 'precision')
hdr.precision = 'double';
end
% rename the variable name for the new events
event = evt;
% write the header and events to the file
save(headerfile, 'hdr', 'event', '-v6');
% write the data file
fid = fopen_or_error(datafile,'wb','ieee-le');
fwrite(fid, dat, hdr.precision);
fclose(fid);
end
case 'fcdc_mysql'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% write to a MySQL server listening somewhere else on the network
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(evt)
ft_error('writing events is not supported here, please see FT_WRITE_EVENT');
end
% check that the required low-level toolbox is available
ft_hastoolbox('mysql', 1);
db_open(filename);
if ~isempty(hdr) && isempty(dat)
% insert the header information into the database
if db_blob
% insert the structure into the database table as a binary blob
db_insert_blob('fieldtrip.header', 'msg', hdr);
else
% make a structure with the same elements as the fields in the database table
s = struct;
s.Fs = hdr.Fs; % sampling frequency
s.nChans = hdr.nChans; % number of channels
s.nSamples = hdr.nSamples; % number of samples per trial
s.nSamplesPre = hdr.nSamplesPre; % number of pre-trigger samples in each trial
s.nTrials = hdr.nTrials; % number of trials
s.label = mxSerialize(hdr.label);
try
s.msg = mxSerialize(hdr);
catch
ft_warning(lasterr);
end
db_insert('fieldtrip.header', s);
end
elseif isempty(hdr) && ~isempty(dat)
dim = size(dat);
if numel(dim)==2
% ensure that the data dimensions correspond to ntrials X nchans X samples
dim = [1 dim];
dat = reshape(dat, dim);
end
ntrials = dim(1);
for i=1:ntrials
if db_blob
% insert the data into the database table as a binary blob
db_insert_blob('fieldtrip.data', 'msg', reshape(dat(i,:,:), dim(2:end)));
else
% create a structure with the same fields as the database table
s = struct;
s.nChans = dim(2);
s.nSamples = dim(3);
try
s.data = mxSerialize(reshape(dat(i,:,:), dim(2:end)));
catch
ft_warning(lasterr);
end
% insert the structure into the database
db_insert('fieldtrip.data', s);
end
end
else
ft_error('you should specify either the header or the data when writing to a MySQL database');
end
case 'matlab'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plain MATLAB file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[path, file, ext] = fileparts(filename);
filename = fullfile(path, [file '.mat']);
if append && exist(filename, 'file')
% read the previous header and data from MATLAB file
prev = load(filename);
% do a sanity chjeck to ensure that the file content is consistent with the new data
if ~isempty(hdr) && ~isequal(hdr, prev.hdr)
ft_error('inconsistent header');
end
elseif append && ~exist(filename, 'file')
% file does not yet exist, which is not a problem
prev = [];
elseif ~append && exist(filename, 'file')
% file already exists, delete it and make a new one further down
ft_warning('deleting existing file ''%s''', filename);
delete(filename);
prev = [];
elseif ~append && ~exist(filename, 'file')
% file does not yet exist, which is not a problem
prev = [];
end
if isfield(prev, 'dat')
% append the new data to the previous data from from the MATLAB file
dat = cat(2, prev.dat, dat);
end
if isfield(prev, 'event')
% append the new events to the previous events from from the MATLAB file
event = cat(2, prev.event, evt);
else
% rename the variable name for the new events
event = evt;
end
% write the data, header and events to the file
save(filename, 'dat', 'hdr', 'event');
case 'mff'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MFF files using Phillips plugin
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ft_hastoolbox('mffmatlabio', 1);
mff_fileio_write(filename, hdr, dat, evt);
case 'neuralynx_sdma'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The first version of this file format contained in the first 8 bytes the
% channel label as string. Subsequently it contained 32 bit integer values.
%
% The second version of this file format starts with 8 bytes describing (as
% a space-padded string) the data type. The channel label is contained in
% the filename as dataset.chanlabel.bin.
%
% The third version of this file format starts with 7 bytes describing (as
% a zero-padded string) the data type, followed by the 8th byte which
% describes the downscaling for the 8 and 16 bit integer representations.
% The downscaling itself is represented as uint8 and should be interpreted as
% the number of bits to shift. The channel label is contained in the
% filename as dataset.chanlabel.bin.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~isempty(evt)
ft_error('writing events is not supported');
end
statuschannel = {
'stx'
'pid'
'siz'
'tsh'
'tsl'
'cpu'
'ttl'
'x01'
'x02'
'x03'
'x04'
'x05'
'x06'
'x07'
'x08'
'x09'
'x10'
'crc'
};
dirname = filename;
clear filename
[path, file] = fileparts(dirname);
for i=1:hdr.nChans
downscale(i) = 0;
if ~isempty(strmatch(hdr.label{i}, statuschannel))
format{i} = 'uint32';
else
format{i} = 'int32';
end
filename{i} = fullfile(dirname, [file '.' hdr.label{i} '.bin']);
end
if ~isfolder(dirname)
mkdir(dirname);
end
% open and write to the output files, one for each selected channel
fid = zeros(hdr.nChans,1);
for j=1:hdr.nChans
if append==false
fid(j) = fopen_or_error(filename{j}, 'wb', 'ieee-le'); % open the file
magic = format{j}; % this used to be the channel name
magic((end+1):8) = 0; % pad with zeros
magic(8) = downscale(j); % number of bits to shift
fwrite(fid(j), magic(1:8)); % write the 8-byte file header
else
fid(j) = fopen_or_error(filename{j}, 'ab', 'ieee-le'); % open the file for appending
end % if append
% convert the data into the correct class
buf = dat(j,:);
if ~strcmp(class(buf), format{j})
switch format{j}
case 'int16'
buf = int16(buf);
case 'int32'
buf = int32(buf);
case 'single'
buf = single(buf);
case 'double'
buf = double(buf);
case 'uint32'
buf = uint32(buf);
otherwise
ft_error('unsupported format conversion');
end
end
% apply the scaling, this corresponds to bit shifting
buf = buf ./ (2^downscale(j));
% write the segment of data to the output file
fwrite(fid(j), buf, format{j}, 'ieee-le');
fclose(fid(j));
end % for each channel
case {'flac' 'm4a' 'mp4' 'oga' 'ogg' 'wav'}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This writes data Y to a Windows WAVE file specified by the file name
% WAVEFILE, with a sample rate of FS Hz and with NBITS number of bits.
% NBITS must be 8, 16, 24, or 32. For NBITS < 32, amplitude values
% outside the range [-1,+1] are clipped
%
% Supported extensions for AUDIOWRITE are:
% .flac
% .m4a
% .mp4
% .oga
% .ogg
% .wav
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not supported for this data format');
end
if ~isempty(evt)
ft_error('writing events is not supported');
end
[path, file, ext] = fileparts(filename);
filename = fullfile(path, [file '.' dataformat]);
switch dataformat
case {'m4a' 'mp4' 'oga' 'ogg'}
options = {};
otherwise
options = {'BitsPerSample', nbits};
end % switch
audiowrite(filename, dat', hdr.Fs, options{:});
case 'plexon_nex'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% single or mulitple channel Plexon NEX file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not yet supported for this data format');
end
if ~isempty(evt)
ft_error('writing events is not supported');
end
if nchans~=1
ft_error('only supported for single-channel data');
end
[path, file, ext] = fileparts(filename);
filename = fullfile(path, [file, '.nex']);
% construct a NEX structure with the required parts of the header
nex.hdr.VarHeader.Type = 5; % continuous
nex.hdr.VarHeader.Name = hdr.label{1};
nex.hdr.VarHeader.WFrequency = hdr.Fs;
if isfield(hdr, 'FirstTimeStamp')
nex.hdr.FileHeader.Frequency = hdr.Fs * hdr.TimeStampPerSample;
nex.var.ts = hdr.FirstTimeStamp;
else
ft_warning('no timestamp information available');
nex.hdr.FileHeader.Frequency = nan;
nex.var.ts = nan;
end
nex.var.indx = 0;
nex.var.dat = dat;
write_plexon_nex(filename, nex);
if 0
% the following code snippet can be used for testing
[nex2.var, nex2.hdr] = read_plexon_nex(filename, 'channel', 1);
end
case 'neuralynx_ncs'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% single channel Neuralynx NCS file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not yet supported for this data format');
end
if ~isempty(evt)
ft_error('writing events is not supported');
end
if nchans>1
ft_error('only supported for single-channel data');
end
[path, file, ext] = fileparts(filename);
filename = fullfile(path, [file, '.ncs']);
LABEL = hdr.label{1}; % single channel
ADCHANNEL = -1; % unknown
FSAMPLE = hdr.Fs;
RECORDNSMP = 512;
RECORDSIZE = 1044;
% cut the downsampled LFP data into record-size pieces
nrecords = ceil(nsamples/RECORDNSMP);
fprintf('construct ncs with %d records\n', nrecords);
% construct a ncs structure with all header details and the data in it
ncs = [];
ncs.NumValidSamp = ones(1,nrecords) * RECORDNSMP; % except for the last block
ncs.ChanNumber = ones(1,nrecords) * ADCHANNEL;
ncs.SampFreq = ones(1,nrecords) * FSAMPLE;
ncs.TimeStamp = zeros(1,nrecords,'uint64');
if rem(nsamples, RECORDNSMP)>0
% the data length is not an integer number of records, pad the last record with zeros
dat = cat(2, dat, zeros(nchans, nrecords*RECORDNSMP-nsamples));
ncs.NumValidSamp(end) = rem(nsamples, RECORDNSMP);
end
ncs.dat = reshape(dat, RECORDNSMP, nrecords);
for i=1:nrecords
% timestamps should be 64 bit unsigned integers
ncs.TimeStamp(i) = uint64(hdr.FirstTimeStamp) + uint64((i-1)*RECORDNSMP*hdr.TimeStampPerSample);
end
% add the elements that will go into the ascii header
ncs.hdr.CheetahRev = '4.23.0';
ncs.hdr.NLX_Base_Class_Type = 'CscAcqEnt';
ncs.hdr.NLX_Base_Class_Name = LABEL;
ncs.hdr.RecordSize = RECORDSIZE;
ncs.hdr.ADChannel = ADCHANNEL;
ncs.hdr.SamplingFrequency = FSAMPLE;
% write it to a file
fprintf('writing to %s\n', filename);
write_neuralynx_ncs(filename, ncs);
if false
% the following code snippet can be used for testing
ncs2 = read_neuralynx_ncs(filename, 1, inf);
end
case 'gdf'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% multiple channel GDF file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not yet supported for this data format');
end
if ~isempty(evt)
ft_error('writing events is not supported');
end
[path, file, ext] = fileparts(filename);
filename = fullfile(path, [file, '.gdf']);
write_gdf(filename, hdr, dat);
case 'edf'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% multiple channel European Data Format file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not yet supported for this data format');
end
if ~isempty(evt)
ft_error('writing events is not supported');
end
[path, file, ext] = fileparts(filename);
filename = fullfile(path, [file, '.edf']);
write_edf(filename, hdr, dat);
case 'anywave_ades'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% see http://meg.univ-amu.fr/wiki/AnyWave:ADES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not yet supported for this data format');
end
if ~isempty(evt)
ft_error('writing events is not supported');
end
dattype = unique(hdr.chantype);
datunit = cell(size(dattype));
for i=1:numel(dattype)
unit = hdr.chanunit(strcmp(hdr.chantype, dattype{i}));
if ~all(strcmp(unit, unit{1}))
ft_error('channels of the same type with different units are not supported');
end
datunit{i} = unit{1};
end
% only change these after checking channel types and units
chantype = adestype(hdr.chantype);
dattype = adestype(dattype);
% ensure that all channels have the right scaling
for i=1:size(dat,1)
switch chantype{i}
case 'MEG'
dat(i,:) = dat(i,:) * ft_scalingfactor(hdr.chanunit{i}, 'T');
case 'Reference'
dat(i,:) = dat(i,:) * ft_scalingfactor(hdr.chanunit{i}, 'T');
case 'GRAD'
dat(i,:) = dat(i,:) * ft_scalingfactor(hdr.chanunit{i}, 'T/m');
case 'EEG'
dat(i,:) = dat(i,:) * ft_scalingfactor(hdr.chanunit{i}, 'V');
case 'SEEG'
dat(i,:) = dat(i,:) * ft_scalingfactor(hdr.chanunit{i}, 'V');
case 'EMG'
dat(i,:) = dat(i,:) * ft_scalingfactor(hdr.chanunit{i}, 'V');
case 'ECG'
dat(i,:) = dat(i,:) * ft_scalingfactor(hdr.chanunit{i}, 'V');
otherwise
% FIXME I am not sure what scaling to apply
end
end
[p, f, x] = fileparts(filename);
filename = fullfile(p, f); % without extension
mat2ades(dat, filename, hdr.Fs, hdr.label, chantype, dattype, datunit);
case 'homer_nirs'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% https://www.nitrc.org/plugins/mwiki/index.php/homer2:Homer_Input_Files#NIRS_data_file_format
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not yet supported for this data format');
end
% convert the input arguments into a FieldTrip raw data structure
data = [];
data.hdr = hdr;
data.trial{1} = dat;
data.time{1} = ((1:hdr.nSamples*hdr.nTrials)-1)/hdr.Fs;
data.label = hdr.label;
data.sampleinfo = [1 size(dat,2)];
% convert the raw data structure to Homer format
nirs = fieldtrip2homer(data, 'event', evt);
% Homer files are MATLAB files in disguise
% see https://www.nitrc.org/plugins/mwiki/index.php/homer2:Homer_Input_Files#NIRS_data_file_format
save(filename, '-struct', 'nirs'); % save the fields as individual variables in the file
case 'snirf'
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% https://github.com/fNIRS/snirf
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if append
ft_error('appending data is not yet supported for this data format');
end
% this uses the SNIRF reading functions from the Homer3 toolbox
ft_hastoolbox('homer3', 1);
% construct a time axis that matches the data, it starts at 0 seconds
time = ((1:hdr.nSamples*hdr.nTrials)-1)/hdr.Fs;
% divide data in nirs channels, stimulus channels and auxillary channels
seldat = startsWith(hdr.chantype, 'nirs');
selstim = strcmp(hdr.chantype, 'stimulus');
selaux = ~seldat & ~selstim;
% create empty SnirfClass
snirf = SnirfClass();
% collect information for creation of snirf file
source_idx = find(contains(hdr.opto.optotype, {'transmitter', 'source'}));
detector_idx = find(contains(hdr.opto.optotype, {'receiver', 'detector'}));
tra = hdr.opto.tra;
tra_t = tra'; % transpose tra matrix to get indices of wavelength by row (thus by channel)
wl_idx = find(tra_t>0);
all_wavelengths = hdr.opto.wavelength(tra_t(wl_idx));
split = nanmedian(all_wavelengths);
WL1.values = all_wavelengths(all_wavelengths<split);
WL2.values = all_wavelengths(all_wavelengths>split);
WL1.nominal = round(median(WL1.values),-1);
WL2.nominal = round(median(WL2.values),-1);
ft_warning('assuming that the nominal wavelengths are %d and %d nm', WL1.nominal, WL2.nominal)
% metaDataTags
snirf.metaDataTags(1).tags.LengthUnit = hdr.opto.unit;
snirf.metaDataTags(1).tags.TimeUnit = 's';
snirf.metaDataTags(1).tags.FrequencyUnit = 'Hz';
% data
snirf.data(1).dataTimeSeries = dat(seldat,:)'; % <number of time points> x <number of channels>
snirf.data(1).time = time'; % <number of time points x 1> (can also be represented as <start time x sample time spacing>
% measurementList
for i=1:size(tra,1)
source = find(tra(i,:)>0);
detector = find(tra(i,:)<0);
snirf.data.measurementList(i).sourceIndex = find(source_idx==source);
snirf.data.measurementList(i).detectorIndex = find(detector_idx==detector);
% snirf.data.measurementList(i).wavelengthActual = all_wavelengths(i); % this is not yet supported by the snirf toolbox
if any(all_wavelengths(i)==WL1.values)
snirf.data.measurementList(i).wavelengthIndex = 1;
else
snirf.data.measurementList(i).wavelengthIndex = 2;
end
snirf.data.measurementList(i).dataType = 99999;
snirf.data.measurementList(i).dataTypeLabel = 'dOD';
end
ft_warning('assuming that the input data represents (change in) optical densities')
% sort the channels according to wavelengths, because this is the way that homer handles data
[dum, idx] = sort(([snirf.data.measurementList(:).wavelengthIndex]));
% update the data accordingly
snirf.data.measurementList = snirf.data.measurementList(idx);
snirf.data.dataTimeSeries=snirf.data.dataTimeSeries(:, idx);
% stim
if ~isempty(evt)
% select events with a string value, the type will be a string
sel = cellfun(@ischar, {evt.value});
if any(sel)
evt_string = evt(sel);
evt_names = unique({evt_string(:).value}); % if the values are strings, this propably contains the event names
for i=1:length(evt_names)
snirf.stim(i).name = evt_names{i};
evt_idx = find(strcmp({evt_string(:).value}, evt_names{i}));
starttime = ([evt_string(evt_idx).sample]-1)/hdr.Fs;
duration = [evt_string(evt_idx).duration]/hdr.Fs;
if isempty(duration)
duration = zeros(1, length(starttime));
end
value = ones(1,length(evt_idx));
snirf.stim(i).data = [starttime' duration' value'];
end
end
% select events with a numeric value, the type will be a string
sel = cellfun(@isnumeric, {evt.value});
if any(sel)
evt_numeric = evt(sel);
evt_names = unique({evt_numeric(:).type});
for i=1:length(evt_names)
snirf.stim(i).name = evt_names{i};
evt_idx = find(strcmp({evt_numeric(:).type}, evt_names{i}));
starttime = ([evt_numeric(evt_idx).sample]-1)/hdr.Fs;
duration = [evt_numeric(evt_idx).duration]/hdr.Fs;
if isempty(duration)
duration = zeros(1, length(starttime));
end
value = [evt_numeric(evt_idx).value];
if isempty(value)
value = ones(1, length(starttime));
end
snirf.stim(i).data = [starttime' duration' value'];
end
end
end
% probe
snirf.probe(1).wavelengths = [WL1.nominal WL2.nominal];
if all(hdr.opto.optopos(:,3)==0)
snirf.probe(1).sourcePos2D = hdr.opto.optopos(source_idx, 1:2);
snirf.probe(1).detectorPos2D = hdr.opto.optopos(detector_idx, 1:2);
else
snirf.probe(1).sourcePos3D = hdr.opto.optopos(source_idx, 1:3);
snirf.probe(1).detectorPos3D = hdr.opto.optopos(detector_idx, 1:3);
layoutpos = getorthoviewpos(hdr.opto.optopos, 'ras', 'superior');
snirf.probe(1).sourcePos2D = layoutpos(source_idx, 1:2);
snirf.probe(1).detectorPos2D = layoutpos(detector_idx, 1:2);
end
snirf.probe(1).sourceLabels = hdr.opto.optolabel(source_idx);
snirf.probe(1).detectorLabels = hdr.opto.optolabel(detector_idx);
% aux
if sum(selaux)~=0
auxdata = dat(selaux,:);
auxlabels = hdr.label(selaux);
for i=1:sum(selaux)
snirf.aux(i).name = auxlabels{i}; % check if correct format
snirf.aux(i).dataTimeSeries = auxdata(i,:)';
snirf.aux(i).time = time';
end
end
% save .snirf file
snirf.Save(filename)
otherwise
ft_error('unsupported data format');
end % switch dataformat
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function type = adestype(type)
for i=1:numel(type)
switch lower(type{i})
case 'meggrad'
type{i} = 'MEG'; % this is for CTF and BTi/4D
case 'megmag'
type{i} = 'MEG'; % this is for Neuromag and BTi/4D
case 'megplanar'
type{i} = 'GRAD'; % this is for Neuromag
case {'refmag' 'refgrad'}
type{i} = 'Reference';
case 'eeg'
type{i} = 'EEG';
case {'seeg' 'ecog' 'ieeg'}
type{i} = 'SEEG'; % all intracranial channels
case 'ecg'
type{i} = 'ECG';
case 'emg'
type{i} = 'EMG';
case 'trigger'
type{i} = 'Trigger';
case 'source'
type{i} = 'Source'; % virtual channel
otherwise
type{i} = 'Other';
end
end