Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Created Kruskal's Algorithm in Java #778

Merged
merged 1 commit into from
Oct 11, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
Kruskal's algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which

form a tree that includes every vertex
has the minimum sum of weights among all the trees that can be formed from the graph

// Kruskal's algorithm in Java

import java.util.*;

class Graph {
class Edge implements Comparable<Edge> {
int src, dest, weight;

public int compareTo(Edge compareEdge) {
return this.weight - compareEdge.weight;
}
};

// Union
class subset {
int parent, rank;
};

int vertices, edges;
Edge edge[];

// Graph creation
Graph(int v, int e) {
vertices = v;
edges = e;
edge = new Edge[edges];
for (int i = 0; i < e; ++i)
edge[i] = new Edge();
}

int find(subset subsets[], int i) {
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}

void Union(subset subsets[], int x, int y) {
int xroot = find(subsets, x);
int yroot = find(subsets, y);

if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
else {
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}

// Applying Krushkal Algorithm
void KruskalAlgo() {
Edge result[] = new Edge[vertices];
int e = 0;
int i = 0;
for (i = 0; i < vertices; ++i)
result[i] = new Edge();

// Sorting the edges
Arrays.sort(edge);
subset subsets[] = new subset[vertices];
for (i = 0; i < vertices; ++i)
subsets[i] = new subset();

for (int v = 0; v < vertices; ++v) {
subsets[v].parent = v;
subsets[v].rank = 0;
}
i = 0;
while (e < vertices - 1) {
Edge next_edge = new Edge();
next_edge = edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
if (x != y) {
result[e++] = next_edge;
Union(subsets, x, y);
}
}
for (i = 0; i < e; ++i)
System.out.println(result[i].src + " - " + result[i].dest + ": " + result[i].weight);
}

public static void main(String[] args) {
int vertices = 6; // Number of vertices
int edges = 8; // Number of edges
Graph G = new Graph(vertices, edges);

G.edge[0].src = 0;
G.edge[0].dest = 1;
G.edge[0].weight = 4;

G.edge[1].src = 0;
G.edge[1].dest = 2;
G.edge[1].weight = 4;

G.edge[2].src = 1;
G.edge[2].dest = 2;
G.edge[2].weight = 2;

G.edge[3].src = 2;
G.edge[3].dest = 3;
G.edge[3].weight = 3;

G.edge[4].src = 2;
G.edge[4].dest = 5;
G.edge[4].weight = 2;

G.edge[5].src = 2;
G.edge[5].dest = 4;
G.edge[5].weight = 4;

G.edge[6].src = 3;
G.edge[6].dest = 4;
G.edge[6].weight = 3;

G.edge[7].src = 5;
G.edge[7].dest = 4;
G.edge[7].weight = 3;
G.KruskalAlgo();
}
}