Skip to content
Temporally Consistent Horizon Lines
Python
Branch: master
Clone or download

Latest commit

Fetching latest commit…
Cannot retrieve the latest commit at this time.

Files

Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
convlstm_net
hlw
kitti_horizon @ 539fa9b
tcn
utilities
.gitmodules
README.md
environment.yml

README.md

Temporally Consistent Horizon Lines

If you use this code, please cite our paper:

@inproceedings{kluger2020temporally,
  title={Temporally Consistent Horizon Lines},
  author={Kluger, Florian and Ackermann, Hanno and Yang, Michael Ying and Rosenhahn, Bodo},
  booktitle={2020 International Conference on Robotics and Automation (ICRA)},
  year={2020}
}

Setup

Get the code:

git clone --recurse-submodules https://github.com/fkluger/tchl.git
cd tchl
git submodule update --init --recursive

Set up the Python environment using Anaconda:

conda env create -f environment.yml
source activate tchl
export PYTHONPATH=./

Download the preprocessed KITTI Horizon data or generate it yourself.

Pre-trained Models

You can download the pre-trained model weights here:

Training

In order to train the temporally consistent ConvLSTM network on KITTI Horizon, simply run:

python convlstm_net/train.py --convlstm --skip --max_error_loss --dataset_path PATH_TO_PREPROCESSED_DATASET 

For the single frame baseline, run:

python convlstm_net/train.py --seqlength 1 --batch 128 --max_error_loss --dataset_path PATH_TO_PREPROCESSED_DATASET 

Evaluation

In order to evaluate the temporally consistent CNN on KITTI Horizon, run:

python convlstm_net/evaluate.py --whole --skip --convlstm --cpu --load temporally_consistent.ckpt --set test --dataset_path PATH_TO_PREPROCESSED_DATASET

For the single-frame baseline, run:

python convlstm_net/evaluate.py --whole --cpu --load single_frame.ckpt --set test --dataset_path PATH_TO_PREPROCESSED_DATASET
You can’t perform that action at this time.