Skip to content

fkluger/tchl

master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
hlw
 
 
tcn
 
 
 
 
 
 
 
 

Temporally Consistent Horizon Lines

If you use this code, please cite our paper:

@inproceedings{kluger2020temporally,
  title={Temporally Consistent Horizon Lines},
  author={Kluger, Florian and Ackermann, Hanno and Yang, Michael Ying and Rosenhahn, Bodo},
  booktitle={2020 International Conference on Robotics and Automation (ICRA)},
  year={2020}
}

Setup

Get the code:

git clone --recurse-submodules https://github.com/fkluger/tchl.git
cd tchl
git submodule update --init --recursive

Set up the Python environment using Anaconda:

conda env create -f environment.yml
source activate tchl
export PYTHONPATH=./

Download the preprocessed KITTI Horizon data or generate it yourself.

Pre-trained Models

You can download the pre-trained model weights here:

Training

In order to train the temporally consistent ConvLSTM network on KITTI Horizon, simply run:

python convlstm_net/train.py --convlstm --skip --max_error_loss --dataset_path PATH_TO_PREPROCESSED_DATASET 

For the single frame baseline, run:

python convlstm_net/train.py --seqlength 1 --batch 128 --max_error_loss --dataset_path PATH_TO_PREPROCESSED_DATASET 

Evaluation

In order to evaluate the temporally consistent CNN on KITTI Horizon, run:

python convlstm_net/evaluate.py --whole --skip --convlstm --cpu --load temporally_consistent.ckpt --set test --dataset_path PATH_TO_PREPROCESSED_DATASET

For the single-frame baseline, run:

python convlstm_net/evaluate.py --whole --cpu --load single_frame.ckpt --set test --dataset_path PATH_TO_PREPROCESSED_DATASET

About

Temporally Consistent Horizon Lines

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages