Skip to content
This repository has been archived by the owner on Apr 2, 2020. It is now read-only.

Latest commit

 

History

History
432 lines (299 loc) · 12.8 KB

examples.rst

File metadata and controls

432 lines (299 loc) · 12.8 KB

Examples

The following examples are meant to be executed in sequence, as they rely on previous steps, e.g., on data present.

Start up JVM

import weka.core.jvm as jvm
jvm.start()

For more information, check out the help of the jvm module:

help(jvm.start)
help(jvm.stop)

Location of the datasets

The following examples assume the datasets to be present in the data_dir directory. For instance, this could be the following directory:

data_dir = "/my/datasets/"

Load dataset and print it

from weka.core.converters import Loader
loader = Loader(classname="weka.core.converters.ArffLoader")
data = loader.load_file(data_dir + "iris.arff")
data.class_is_last()

print(data)

Output help from underlying OptionHandler

If the underlying Java class implements the weka.core.OptionHandler method, then you can use the to_help() method to generate a string containing the globalInfo() and listOptions() information:

from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.trees.J48")
print(cls.to_help())

Build classifier on dataset, output predictions

from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.trees.J48", options=["-C", "0.3"])
cls.build_classifier(data)

for index, inst in enumerate(data):
    pred = cls.classify_instance(inst)
    dist = cls.distribution_for_instance(inst)
    print(str(index+1) + ": label index=" + str(pred) + ", class distribution=" + str(dist))

Build classifier on dataset, print model and draw graph

from weka.classifiers import Classifier
cls = Classifier(classname="weka.classifiers.trees.J48", options=["-C", "0.3"])
cls.build_classifier(data)

print(cls)

import weka.plot.graph as graph  # NB: pygraphviz and PIL are required
graph.plot_dot_graph(cls.graph)

Build classifier incrementally with data and print model

loader = Loader(classname="weka.core.converters.ArffLoader")
iris_inc = loader.load_file(data_dir + "iris.arff", incremental=True)
iris_inc.class_is_last()

print(iris_inc)

cls = Classifier(classname="weka.classifiers.bayes.NaiveBayesUpdateable")
cls.build_classifier(iris_inc)
for inst in loader:
    cls.update_classifier(inst)

print(cls)

Cross-validate filtered classifier and print evaluation and display ROC

data = loader.load_file(data_dir + "diabetes.arff")
data.class_is_last()

from weka.filters import Filter
remove = Filter(classname="weka.filters.unsupervised.attribute.Remove", options=["-R", "1-3"])

cls = Classifier(classname="weka.classifiers.bayes.NaiveBayes")

from weka.classifiers import FilteredClassifier
fc = FilteredClassifier()
fc.filter = remove
fc.classifier = cls

from weka.classifiers import Evaluation
from weka.core.classes import Random
evl = Evaluation(data)
evl.crossvalidate_model(fc, data, 10, Random(1))

print(evl.percent_correct)
print(evl.summary())
print(evl.class_details())

import weka.plot.classifiers as plcls  # NB: matplotlib is required
plcls.plot_roc(evl, class_index=[0, 1], wait=True)

Cross-validate regressor, display classifier errors and predictions

from weka.classifiers import PredictionOutput, KernelClassifier, Kernel
data = loader.load_file(data_dir + "bolts.arff")
data.class_is_last()

cls = KernelClassifier(classname="weka.classifiers.functions.SMOreg", options=["-N", "0"])
kernel = Kernel(classname="weka.classifiers.functions.supportVector.RBFKernel", options=["-G", "0.1"])
cls.kernel = kernel
pout = PredictionOutput(classname="weka.classifiers.evaluation.output.prediction.PlainText")
evl = Evaluation(data)
evl.crossvalidate_model(cls, data, 10, Random(1), pout)

print(evl.summary())
print(pout.buffer_content())

import weka.plot.classifiers as plcls  # NB: matplotlib is required
plcls.plot_classifier_errors(evl.predictions, wait=True)

Parameter optimization - GridSearch

The following code optimizes the C parameter of SMOreg and the gamma parameter of its RBFKernel:

from weka.classifiers import GridSearch
grid = GridSearch(options=["-sample-size", "100.0", "-traversal", "ROW-WISE", "-num-slots", "1", "-S", "1"])
grid.evaluation = "CC"
grid.y = {"property": "kernel.gamma", "min": -3.0, "max": 3.0, "step": 1.0, "base": 10.0, "expression": "pow(BASE,I)"}
grid.x = {"property": "C", "min": -3.0, "max": 3.0, "step": 1.0, "base": 10.0, "expression": "pow(BASE,I)"}
cls = Classifier(
    classname="weka.classifiers.functions.SMOreg",
    options=["-K", "weka.classifiers.functions.supportVector.RBFKernel"])
grid.classifier = cls
grid.build_classifier(train)
print("Model:\n" + str(grid))
print("\nBest setup:\n" + grid.best.to_commandline())

NB: Make sure that the GridSearch package is not installed, as the GridSearch meta-classifier is already part of the monolithic weka.jar that comes with python-weka-wrapper.

Parameter optimization - MultiSearch

The following code optimizes the C parameter of SMOreg and the gamma parameter of its RBFKernel:

from weka.core.classes import ListParameter, MathParameter
multi = MultiSearch(
    options=["-sample-size", "100.0", "-initial-folds", "2", "-subsequent-folds", "2",
             "-num-slots", "1", "-S", "1"])
multi.evaluation = "CC"
mparam = MathParameter()
mparam.prop = "classifier.kernel.gamma"
mparam.minimum = -3.0
mparam.maximum = 3.0
mparam.step = 1.0
mparam.base = 10.0
mparam.expression = "pow(BASE,I)"
lparam = ListParameter()
lparam.prop = "classifier.C"
lparam.values = ["-2.0", "-1.0", "0.0", "1.0", "2.0"]
multi.parameters = [mparam, lparam]
cls = Classifier(
    classname="weka.classifiers.functions.SMOreg",
    options=["-K", "weka.classifiers.functions.supportVector.RBFKernel"])
multi.classifier = cls
multi.build_classifier(train)
print("Model:\n" + str(multi))
print("\nBest setup:\n" + multi.best.to_commandline())

NB: multisearch-weka-package must be installed for this to work.

Experiments

datasets = [
    data_dir + "iris.arff",
    data_dir + "vote.arff",
    data_dir + "anneal.arff"
]
classifiers = [
    Classifier(classname="weka.classifiers.rules.ZeroR"),
    Classifier(classname="weka.classifiers.trees.J48"),
    Classifier(classname="weka.classifiers.trees.REPTree"),
]
result = "exp.arff"
from weka.experiments import SimpleCrossValidationExperiment
exp = SimpleCrossValidationExperiment(
    classification=True,
    runs=10,
    folds=10,
    datasets=datasets,
    classifiers=classifiers,
    result=result)
exp.setup()
exp.run()

import weka.core.converters
loader = weka.core.converters.loader_for_file(result)
data = loader.load_file(result)
from weka.experiments import Tester, ResultMatrix
matrix = ResultMatrix(classname="weka.experiment.ResultMatrixPlainText")
tester = Tester(classname="weka.experiment.PairedCorrectedTTester")
tester.resultmatrix = matrix
comparison_col = data.attribute_by_name("Percent_correct").index
tester.instances = data

print(tester.header(comparison_col))
print(tester.multi_resultset_full(0, comparison_col))
print(tester.multi_resultset_full(1, comparison_col))

Clustering

data = loader.load_file(data_dir + "vote.arff")
data.delete_last_attribute()

from weka.clusterers import Clusterer
clusterer = Clusterer(classname="weka.clusterers.SimpleKMeans", options=["-N", "3"])
clusterer.build_clusterer(data)

print(clusterer)

# cluster the data
for inst in data:
    cl = clusterer.cluster_instance(inst)  # 0-based cluster index
    dist = clusterer.distribution_for_instance(inst)   # cluster membership distribution
    print("cluster=" + str(cl) + ", distribution=" + str(dist))

Associations

data = loader.load_file(data_dir + "vote.arff")
data.class_is_last()

from weka.associations import Associator
associator = Associator(classname="weka.associations.Apriori", options=["-N", "9", "-I"])
associator.build_associations(data)

print(associator)

Attribute selection

data = loader.load_file(data_dir + "vote.arff")
data.class_is_last()

from weka.attribute_selection import ASSearch, ASEvaluation, AttributeSelection
search = ASSearch(classname="weka.attributeSelection.BestFirst", options=["-D", "1", "-N", "5"])
evaluator = ASEvaluation(classname="weka.attributeSelection.CfsSubsetEval", options=["-P", "1", "-E", "1"])
attsel = AttributeSelection()
attsel.search(search)
attsel.evaluator(evaluator)
attsel.select_attributes(data)

print("# attributes: " + str(attsel.number_attributes_selected))
print("attributes: " + str(attsel.selected_attributes))
print("result string:\n" + attsel.results_string)

Data generators

from weka.datagenerators import DataGenerator
generator = DataGenerator(classname="weka.datagenerators.classifiers.classification.Agrawal", options=["-B", "-P", "0.05"])
DataGenerator.make_data(generator, ["-o", data_dir + "generated.arff"])

generator = DataGenerator(classname="weka.datagenerators.classifiers.classification.Agrawal", options=["-n", "10", "-r", "agrawal"])
generator.dataset_format = generator.define_data_format()
print(generator.dataset_format)
if generator.single_mode_flag:
    for i in xrange(generator.num_examples_act):
        print(generator.generate_example())
else:
    print(generator.generate_examples())

Filters

data = loader.load_file(data_dir + "vote.arff")

from weka.filters import Filter
remove = Filter(classname="weka.filters.unsupervised.attribute.Remove", options=["-R", "last"])
remove.inputformat(data)
filtered = remove.filter(data)

print(filtered)

Packages

The following examples show how to list, install and uninstall an official package:

import weka.core.packages as packages
items = packages.all_packages()
for item in items:
    if item.get_name() == "CLOPE":
        print(item.name + " " + item.url)

packages.install_package("CLOPE")
items = packages.installed_packages()
for item in items:
    print(item.name + " " + item.url)

packages.uninstall_package("CLOPE")
items = packages.installed_packages()
for item in items:
    print(item.name + " " + item.url)

You can also install unofficial packages. The following example installs a previously downloaded zip file:

import weka.core.packages as packages
packages.install_package("/some/where/funky-package-1.0.0.zip")

And here installing it directly from a URL:

import weka.core.packages as packages
packages.install_package("http://some.server.com/funky-package-1.0.0.zip")

Stop JVM

jvm.stop()

Database access

Thanks to JDBC (Java Database Connectivity) it is very easy to connect to SQL databases and load data as an Instances object. However, since we rely on 3rd-party libraries to achieve this, we need to specify the database JDBC driver jar when we are starting up the JVM. For instance, adding a MySQL driver called mysql-connector-java-X.Y.Z-bin.jar:

jvm.start(class_path=["/some/where/mysql-connector-java-X.Y.Z-bin.jar"])

Assuming the following parameters:

  • database host is dbserver
  • database is called mydb
  • database user is me
  • database password is verysecret

We can use the following code to select all the data from table lotsadata.

from weka.core.database import InstanceQuery
iquery = InstanceQuery()
iquery.db_url = "jdbc:mysql://dbserver:3306/mydb"
iquery.user = "me"
iquery.password = "verysecret"
iquery.query = "select * from lotsadata"
data = iquery.retrieve_instances()