Skip to content

Commit

Permalink
Sancho added
Browse files Browse the repository at this point in the history
  • Loading branch information
franciscovillaescusa committed Oct 30, 2023
1 parent a7bf1b9 commit c1ccf2c
Show file tree
Hide file tree
Showing 5 changed files with 211 additions and 2 deletions.
Binary file added docs/source/Sancho2.png
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ Historically, Quijote was developed from the `HADES simulations <https://francis
snapshots
halos
galaxies
sancho
gigantes
voids
Pk
Expand Down
2 changes: 2 additions & 0 deletions docs/source/news.rst
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
News
====

**November 2023:** The Sancho suite, a collection of 240,000 galaxy catalogs (together with their corresponding power spectra and bispectra) created from a 10-parameter HOD model is now publicly available. Check :ref:`Sancho` for details.

**October 2023:** Quijote now contains FoF halo catalogs that include the IDs of the particles belonging to the different halos. Check :ref:`halo_catalogues` for details.

**September 2023:** Data from the Ulagam simulations is made publicly available. Check `the Ulagam website <https://ulagam-simulations.readthedocs.io>`_ for details.
Expand Down
4 changes: 2 additions & 2 deletions docs/source/publications.rst
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ Publications
#. | **Towards an Optimal Cosmological Detection of Neutrino Mass with Bayesian Inference**
| Adrian Bayer
| `PhD thesis <https://escholarship.org/uc/item/0gf06762>`_
| `PhD thesis <https://escholarship.org/uc/item/0gf06762>`__
#. | **The effects of non-linearity on the growth rate constraint from velocity correlation functions**
| Motonari Tonegawa, Stephen Appleby, Changbom Park, Sungwook E. Hong, Juhan Kim
Expand Down Expand Up @@ -82,7 +82,7 @@ Publications
#. | **Numerical Studies in Rarefied Gas Dynamics, Cosmological Summary Statistics, and Scalar Field Dark Matter**
| Alvaro Zamora
| `PhD thesis <https://searchworks.stanford.edu/view/14783507>`_
| `PhD thesis <https://searchworks.stanford.edu/view/14783507>`__
#. | **Scattering Spectra Models for Physics**
| Sihao Cheng, Rudy Morel, Erwan Allys, Brice Menard, Stephane Mallat
Expand Down
206 changes: 206 additions & 0 deletions docs/source/sancho.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,206 @@
.. _Sancho:

************
Sancho Suite
************

.. image:: Sancho2.png
:width: 500

The Sancho Suite of galaxy mock catalogs consist of :math:`240,000` galaxy catalogs in redshift space scanning across 16 cosmologies,
6 non-Gaussian initial conditions and 10 Halo Occupation Distribution (HOD) model parameters. The average number density of each
box is :math:`n_g \sim 3 \times 10^{-4} \,(h/\textrm{Gpc})` at :math:`z=0.5` and they are generated from the halo catalogs of
`Quijote simulations <https://arxiv.org/abs/1909.05273>`_, each run with :math:`512^3` particles on a :math:`1\, (\textrm{Gpc}/h)^3` box. The fiducial HOD model is tailored such that the catalogs mock the CMASS galaxies observed by BOSS.


Organization
------------

The **Sancho catalogs** are organized in the following way:

- :math:`15,000` mocks at the fiducial cosmological and HOD parameter values.
- :math:`172,500` mocks at :math:`23` different cosmological/HOD parameter values and :math:`45,000` mocks at different amplitudes of different types of non-Gaussian initial conditions. For each cosmology and HOD set of values, there are :math:`500` N-body realizations and, for each of these, :math:`5` realizations of the HOD are run, making a total of :math:`2500` mocks.
- Redshift space displacements are computed in the distant observer approximation along each of the axes. There are three different files for each realization/redshift.

Cosmologies and HOD implementation
----------------------------------

We vary 5 cosmological parameters, :math:`\Omega_m`, :math:`\Omega_b`, :math:`h`, :math:`n_s` and :math:`\sigma_8`
plus the sum of massive neutrinos :math:`\sum m_\nu` and 3 different types of primordial non-Gaussianities,
:math:`f_{\textrm{NL}}^{\textrm{local}}`, :math:`f_{\textrm{NL}}^{\textrm{equil}}` and :math:`f_{\textrm{NL}}^{\textrm{equil}}`,
following the same naming and step convention as the rest of the Quijote suite.

The HOD model adopted is as described in `Zheng et al <https://arxiv.org/abs/astro-ph/0703457>`_ and it consists of 5 parameters:

- :math:`M_{\textrm{min}}` is the lowest mass of a halo that can host any galaxy
- :math:`\sigma_{\log M}` regulates the central galaxy occupation, which is modeled as a Bernoulli distribution
- The satellite galaxy distribution is a Poisson distribution with a mean that depends on three parameters: :math:`M_0`, :math:`M_1`, and :math:`\alpha`.

> The code implementing this HOD algorithm has been developed by Juan Calles and is freely available `here <https://gitlab.com/jcallesh/hod>`_ .

We summarize all cosmologies and HOD models in the following table:

+----------+----------------------------------------+------------------+-----------+-------------+------------------+--------------------+------------------------------------------+------------------------------------------+------------------------------------------+-------------------------------+-------------------------+------------------+----------------+------------------+--------------+
| | Cosmological Parameters | HOD parameters |
+==========+========================================+==================+===========+=============+==================+====================+==========================================+==========================================+==========================================+===============================+=========================+==================+================+==================+==============+
| name | :math:`\Omega_m` | :math:`\Omega_b` | :math:`h` | :math:`n_s` | :math:`\sigma_8` | :math:`\sum m_\nu` | :math:`f_{\textrm{NL}}^{\textrm{local}}` | :math:`f_{\textrm{NL}}^{\textrm{equil}}` | :math:`f_{\textrm{NL}}^{\textrm{ortho}}` | :math:`\log M_{\textrm{min}}` | :math:`\sigma_{\log M}` | :math:`\log M_0` | :math:`\alpha` | :math:`\log M_1` | realizations |
+----------+----------------------------------------+------------------+-----------+-------------+------------------+--------------------+------------------------------------------+------------------------------------------+------------------------------------------+-------------------------------+-------------------------+------------------+----------------+------------------+--------------+
| fiducial | 0.3175 | 0.049 | 0.6711 | 0.9624 | 0.834 | 0 | 0 | 0 | 0 | 13.0 | 0.2 | 13.1 | 0.75 | 14.25 | 15,000 |
+----------+----------------------------------------+------------------+-----------+-------------+------------------+--------------------+------------------------------------------+------------------------------------------+------------------------------------------+-------------------------------+-------------------------+------------------+----------------+------------------+--------------+
| step | 0.01 | 0.002 | 0.02 | 0.02 | 0.015 | \* | 100 | 100 | 100 | 0.025 | 0.025 | 0.2 | 0.2 | 0.2 | 500 |
+----------+----------------------------------------+------------------+-----------+-------------+------------------+--------------------+------------------------------------------+------------------------------------------+------------------------------------------+-------------------------------+-------------------------+------------------+----------------+------------------+--------------+

\* As for the mass of neutrinos, :math:`M_\nu`, there are three steps corresponding to the total mass of neutrinos of 0.1, 0.2, and 0.4 eV.


.. Cosmological models v.2
.. -----------------------
.. The fiducial cosmological parameter values are :
.. - :math:`\Omega_m = 0.3175`
.. - :math:`\Omega_b = 0.049`
.. - :math:`h=0.6711`
.. - :math:`n_s = 0.9624`
.. - :math:`\sigma_8 = 0.834`
.. - :math:`f_{\rm NL}^{\rm local} = 0`
.. - :math:`f_{\rm NL}^{\rm equil} = 0`
.. - :math:`f_{\rm NL}^{\rm ortho} = 0`
.. The non-fiducial cosmological parameter values are varied using a step :math:`\Delta\theta` above or below the fiducial value of the following amplitudes
.. \{ :math:`\Delta\Omega_m`, :math:`\Delta\Omega_b`, :math:`\Delta h`, :math:`\Delta n_s`, :math:`\Delta \sigma_8` \} = \{0.01, 0.002, 0.02, 0.02, 0.015\}.
.. For the mass of neutrinos, :math:`M_\nu`, there are three steps corresponding to the total mass of neutrinos of 0.1, 0.2, and 0.4 eV.
.. As for the step on :math:`\Delta f_{\rm NL}^{\rm local}`, :math:`\Delta f_{\rm NL}^{\rm equil}`, and :math:`\Delta f_{\rm NL}^{\rm ortho}` are 100.
.. The HOD model adopted is as described in `Zheng et al <https://arxiv.org/abs/astro-ph/0703457>`_.
.. For the fiducial parameters of our HOD model, we use the following values:
.. \{:math:`\log M_{\rm min}`, :math:`\sigma_{\log M}`, :math:`\log M_0`, :math:`\alpha`, :math:`\log M_1`\} = \{13.0, 0.2, 13.1, 0.75, 14.25\}.
.. - :math:`M_{\rm min}` is the lowest mass of a halo that can host any galaxy
.. - :math:`\sigma_{\log M}` regulates the central galaxy occupation, which is modeled as a Bernoulli distribution
.. - The satellite galaxy distribution is a Poisson distribution with a mean that depends on three parameters: :math:`M_0`, :math:`M_1`, and :math:`\alpha`.
.. > The code implementing this HOD algorithm has been developed by Juan Calles and is freely available `here <https://gitlab.com/jcallesh/hod>`_.
Access to data
--------------

Sancho can be accessed through the dedicated folder in `Globus <https://app.globus.org/file-manager?origin_id=37b8e8c6-6679-11ed-b0bb-bfe7e7197080&origin_path=%2F>`_.
Folders are organized in the same way as the rest of the Quijote suite: */Cosmology/#realization/files*

Inside each of these directories you can find the following products:

- Catalogs in Python binary including position, velocity and type (central or galaxy),
- Power spectrum measurements including monopole, quadrupole and hexadecapole (see details in the next section),
- Bispectrum measurements, for now monopole only, quadrupole coming soon!

The file naming for catalogs have the following structure:

``A_HOD_B_NFW_C_1Gpc_z0.50_D_E.npz``

where

- A: cosmology with the same naming convention as Quijote products (fiducial,Om_p,Om_m,...)
- B: HOD set of parameters. 'fid' is the fiducial set, and the rest of parameters are named as in previous section, using '_m' and '_p' to indicate steps.
- C: ID of HOD realization (from 0 to 4)
- D: RSD direction (1:x, 2:y, 3:z)
- E: ID of run

Example: ``Mnu_p_HOD_fid_NFW_sample0_1Gpc_z0.50_RSD3_run0.npz``

For power spectrum and bispectrum measurements, files have an additional string ``ps_sancho`` and ``bisp_sancho``, respectively, at the beginning of the file name, and the file format is ``.dat``.

Metadata
----------

To access relevant metadata of each catalog, a simple code `metadata.py` is available at the parent folder of the Sancho suite.
Usage:

.. code-block:: shell
python metadata.py --cat_file "catalog_file.npz"
The code will output a JSON file with metadata listing cosmology, simulation , HOD and measurements specifications.

How to read catalogs
--------------------

After download, the catalogs can be used in Python with the following script:

.. code-block:: python
import numpy as np
filename = 'filename.npz'
cat = np.load(filename)
pos = cat['pos'] # shape: (N_galaxies, 3) --> X,Y,Z position of each galaxy in Mpc/h
vel = cat['vel'] # shape: (N_galaxies, 3) --> Vx, Vy, Vz velocity of the galaxy in km/s
gtype = cat['gtype'] # shape: scalar --> Type of galaxy, central: 1, satellite: 0
Power spectrum and Bispectrum
-----------------------------

We measure the galaxy redshift power spectrum using the public code `PBI4 <https://zenodo.org/records/10008045>`_.
We use a fourth-order density interpolation and interlacing scheme described in `Sefusatti et al <https://arxiv.org/abs/1512.07295>`_.
Bins have width of :math:`\Delta k = 2 k_f`, where :math:`k_f=0.006 h/Mpc` is the fundamental frequency of the box, and are computed up to :math:`k_{\rm max} = 0.3 h/Mpc`.

The structure of the Power spectrum files is:

:math:`k\,\,` | :math:`\,\,k_{\textrm{avg}}\,\,` | :math:`\,\,P0(k)\,\,` | :math:`\,\,P2(k)\,\,` | :math:`\,\,P4(k)\,\,` | :math:`\,\,N_{\textrm{modes}}\,\,`

where :math:`k_{\textrm{avg}}` is the value of :math:`k` inside a bin averaged over the bin, in units of :math:`h/Mpc`.
P0, P2 and P4 are the monopole, quadrupole and hexadecapole, respectively. The units of the power spectra are :math:`(\textrm{Mpc}/h)^3`.
On the third line of each file, you can find two numbers, corresponding to the number of galaxies for this catalog, and the related Poisson shot-noise.

In python, the files can be read as

.. code-block:: python
import numpy as np
filename = 'ps_sancho_fiducial_HOD_fid_NFW_sample0_1Gpc_z0.50_RSD1_run1.dat'
k, avgk, pk,avgP2, avgP4, Nmodes= np.loadtxt(filename, unpack=True)
To get shot-noise:

.. code-block:: python
def getSN(filename):
f = open(filename)
fline = f.readline()
fline = f.readline()
fline = f.readline()
psn = float(fline.split(' ')[-1])
f.close()
return psn
Using the same binning, we also measure the bispectrum for each galaxy catalog, resulting in 1654 triangles up to :math:`k_{\textrm{max}} = 0.3 h/\textrm{Mpc}`.

The structure of the Bispectrum files are:

:math:`\,\,k_1/k_f\,\,` | :math:`\,\,k_2/k_f\,\,` | :math:`\,\,k_3/k_f\,\,` | :math:`\,\,P(k_1)\,\,` | :math:`\,\,P(k_2)\,\,` | :math:`\,\,P(k_3)\,\,` | :math:`\,\,B(k_1,k_2,k_3)+{\textrm{SN}}\,\,` | :math:`\,\,{\textrm{SN}}\,\,` | :math:`\,\,N_{\textrm{tr}}\,\,`

where :math:`{\textrm{SN}} = 1/n^2 + (P(k_1) + P(k_2) + P(k_3)) / n` is the bispectrum Poisson shot-noise and :math:`N_{\textrm{tr}}` is the number of triangles in a give triangle bin.

In python, the files can be read as

.. code-block:: python
import numpy as np
k1, k2, k3, Pk1, Pk2, Pk3, Btotal, BSN, N_tri= np.loadtxt(filename, unpack=True)
Team
----

The Sancho Suite of galaxy mock catalogs was developed in 2023 by:

- Matteo Biagetti (Area Science Park, Italy)
- Juan Calles (PUCV, Chile)
- Jacky Yip (UW–Madison, USA)
- Emilio Bellini (IFPU, Italy)

If you use data from Sancho, please cite the `Yip, Biagetti, Cole, Bellini, Calles, Shiu (2023) <https://arxiv.org/abs/xxxx.xxxxx>`_.

0 comments on commit c1ccf2c

Please sign in to comment.