Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

README.md

2D_detection

TensorFlow implementation of SqueezeDet (https://arxiv.org/pdf/1612.01051.pdf) based on the official implementation (https://github.com/BichenWuUCB/squeezeDet), trained on the KITTI dataset (http://www.cvlibs.net/datasets/kitti/).

  • Youtube video of results (https://youtu.be/5BBwjvlUULI):

  • demo video with results

  • The results in the video can obviously be improved, but because of limited computing resources (personally funded Azure VM) I did not perform any further hyperparameter tuning.


Documentation:

preprocess_data.py:

  • ASSUMES: that all KITTI training images have been placed in data_dir/KITTI/data_object/training/image_2, that all corresponding labels have been placed in data_dir/KITTI/data_object/training/label_2 and that data_dir/KITTI/data_tracking/testing/image_02 contains the 0000, 0001, 0004 and 0012 sequence directories.
  • DOES: script for performing all necessary preprocessing of images and labels.

model.py:

  • ASSUMES: that caffemodel_weights.pkl has been placed in 2D_detection/data.
  • DOES: contains the SqueezeDet_model class.

utilities.py:

  • ASSUMES: -
  • DOES: contains a number of functions used in different parts of the project.

train.py:

  • ASSUMES: that preprocess_data.py has already been run.
  • DOES: script for training the model.

run_on_KITTI_sequence.py:

  • ASSUMES: that preprocess_data.py has already been run.
  • DOES: runs a model checkpoint (set in line 45) on all frames in a KITTI test sequence (set in line 28) and creates a video of the result.

Training details:

  • The SqueezeNet network was initialized with the pretrained model in https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.0 (squeezenet_v1.0.caffemodel and deploy.prototxt). To load these weights into TensorFlow, one needs to have pycaffe installed (must be able to run "import caffe"). Run get_caffemodel_weights in utilities.py and save the output as caffemodel_weights.pkl in 2D_detection/data using cPickle. These files (caffemodel_weights.pkl, squeezenet_v1.0.caffemodel and deploy.prototxt) are also included in 2D_detection/data in the repo.

  • Batch size: 32.

  • For all other hyperparameters I used the same values as in the paper.

  • Training loss:

  • training loss

  • Validation loss:

  • validation loss

  • The results in the video above was obtained with the model at epoch 58, for which a checkpoint is included in 2D_detection/training_logs/best_model in the repo.


Training on Microsoft Azure:

To train the model, I used an NC6 virtual machine on Microsoft Azure. Below I have listed what I needed to do in order to get started, and some things I found useful. For reference, my username was 'fregu856':

#!/bin/bash

# DEFAULT VALUES
GPUIDS="0"
NAME="fregu856_GPU"


NV_GPU="$GPUIDS" nvidia-docker run -it --rm \
        -p 5584:5584 \
        --name "$NAME""$GPUIDS" \
        -v /home/fregu856:/root/ \
        tensorflow/tensorflow:latest-gpu bash
  • /root/ will now be mapped to /home/fregu856 (i.e., $ cd -- takes you to the regular home folder).

  • To start the image:

    • $ sudo sh start_docker_image.sh
  • To commit changes to the image:

    • Open a new terminal window.
    • $ sudo docker commit fregu856_GPU0 tensorflow/tensorflow:latest-gpu
  • To stop the image when it’s running:

    • $ sudo docker stop fregu856_GPU0
  • To exit the image without killing running code:

    • Ctrl-P + Q
  • To get back into a running image:

    • $ sudo docker attach fregu856_GPU0
  • To open more than one terminal window at the same time:

    • $ sudo docker exec -it fregu856_GPU0 bash
  • To install the needed software inside the docker image:

    • $ apt-get update
    • $ apt-get install nano
    • $ apt-get install sudo
    • $ apt-get install wget
    • $ sudo apt-get install libopencv-dev python-opencv
    • Commit changes to the image (otherwise, the installed packages will be removed at exit!)

About

TensorFlow implementation of SqueezeDet, trained on the KITTI dataset.

Topics

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.