Skip to content

Commit

Permalink
Merge pull request #777 from Robinlovelace/spcv_fixes
Browse files Browse the repository at this point in the history
Postmerge fixes spatial CV chapter
  • Loading branch information
jannes-m committed Apr 21, 2022
2 parents aa4039a + 7f44b73 commit 011ba51
Show file tree
Hide file tree
Showing 8 changed files with 209 additions and 214 deletions.
162 changes: 72 additions & 90 deletions 12-spatial-cv.Rmd

Large diffs are not rendered by default.

57 changes: 30 additions & 27 deletions 15-eco.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ In it you will also make use of R's\index{R} interfaces to dedicated GIS\index{G

The chapter uses the following packages:

```{r 15-eco-1, message=FALSE, eval=FALSE}
```{r 15-eco-1, message=FALSE}
library(data.table)
library(dplyr)
library(mlr3)
Expand Down Expand Up @@ -70,7 +70,7 @@ To guarantee an optimal prediction, it is advisable to tune beforehand the hyper

All the data needed for the subsequent analyses is available via the **spDataLarge** package.

```{r 15-eco-2, eval=FALSE}
```{r 15-eco-2}
# spatial vector objects
data("study_area", "random_points", "comm", package = "spDataLarge")
# spatial raster objects
Expand Down Expand Up @@ -229,13 +229,13 @@ ep$carea = log10(ep$carea)

As a convenience to the reader, we have added `ep` to **spDataLarge**:

```{r 15-eco-9, eval=FALSE}
```{r 15-eco-9, cache.lazy=FALSE}
ep = terra::rast(system.file("raster/ep.tif", package = "spDataLarge"))
```

Finally, we can extract the terrain attributes to our field observations (see also Section \@ref(raster-extraction)).

```{r 15-eco-10, eval=FALSE}
```{r 15-eco-10, cache=TRUE, cache.lazy=FALSE, message=FALSE, warning=FALSE}
random_points[, names(ep)] =
# terra::extract adds automatically a for our purposes unnecessary ID column
terra::extract(ep, terra::vect(random_points)) |>
Expand Down Expand Up @@ -272,7 +272,7 @@ Often ordinations\index{ordination} using presence-absence data yield better res
Ordination techniques such as NMDS\index{NMDS} require at least one observation per site.
Hence, we need to dismiss all sites in which no species were found.

```{r 15-eco-11, eval=FALSE}
```{r 15-eco-11}
# presence-absence matrix
pa = vegan::decostand(comm, "pa") # 100 rows (sites), 69 columns (species)
# keep only sites in which at least one species was found
Expand Down Expand Up @@ -303,7 +303,7 @@ nmds$stress
saveRDS(nmds, "extdata/15-nmds.rds")
```

```{r 15-eco-14, include=FALSE, eval=FALSE}
```{r 15-eco-14, include=FALSE}
nmds = readRDS("extdata/15-nmds.rds")
```

Expand All @@ -326,7 +326,13 @@ plot(y = sc[, 1], x = elev, xlab = "elevation in m",
ylab = "First NMDS axis", cex.lab = 0.8, cex.axis = 0.8)
```

```{r xy-nmds, fig.cap="Plotting the first NMDS axis against altitude.", fig.scap = "First NMDS axis against altitude plot.", fig.asp=1, out.width="60%"}
```{r xy-nmds, fig.cap="Plotting the first NMDS axis against altitude.", fig.scap = "First NMDS axis against altitude plot.", fig.asp=1, out.width="60%", message=FALSE, echo=FALSE}
elev = dplyr::filter(random_points, id %in% rownames(pa)) |>
dplyr::pull(dem)
# rotating NMDS in accordance with altitude (proxy for humidity)
rotnmds = vegan::MDSrotate(nmds, elev)
# extracting the first two axes
sc = vegan::scores(rotnmds, choices = 1:2)
knitr::include_graphics("figures/15_xy_nmds.png")
```

Expand Down Expand Up @@ -393,7 +399,7 @@ We refer the reader to @james_introduction_2013 for a more detailed description
To introduce decision trees by example, we first construct a response-predictor matrix by joining the rotated NMDS\index{NMDS} scores to the field observations (`random_points`).
We will also use the resulting data frame for the **mlr3**\index{mlr3 (package)} modeling later on.

```{r 15-eco-16, eval=FALSE}
```{r 15-eco-16, message=FALSE}
# construct response-predictor matrix
# id- and response variable
rp = data.frame(id = as.numeric(rownames(sc)), sc = sc[, 1])
Expand Down Expand Up @@ -478,7 +484,7 @@ Having already constructed the input variables (`rp`), we are all set for specif
For specifying a spatial task, we use again the **mlr3spatiotempcv** package [@schratz_mlr3spatiotempcv_2021 & Section \@ref(spatial-cv-with-mlr3)].
Since our response (`sc`) is numeric, we use a regression\index{regression} task.

```{r 15-eco-20, eval=FALSE}
```{r 15-eco-20}
# create task
task = mlr3spatiotempcv::TaskRegrST$new(
id = "mongon", backend = dplyr::select(rp, -id, -spri), target = "sc")
Expand All @@ -488,7 +494,7 @@ Using an `sf` object as the backend automatically provides the geometry informat
Additionally, we got rid of the columns `id` and `spri` since these variables should not be used as predictors in the modeling.
Next, we go on to construct the a random forest\index{random forest} learner from the **ranger** package.

```{r 15-eco-21, eval=FALSE}
```{r 15-eco-21}
lrn_rf = lrn("regr.ranger", predict_type = "response")
```

Expand All @@ -507,7 +513,7 @@ Hyperparameter\index{hyperparameter} combinations will be selected randomly but
<!-- (`r # ncol(rp) - 1`), -->
(4), `sample.fraction` should range between 0.2 and 0.9 and `min.node.size` should range between 1 and 10.

```{r 14-eco-23, eval=FALSE}
```{r 15-eco-23}
# specifying the search space
search_space = paradox::ps(
mtry = paradox::p_int(lower = 1, upper = ncol(task$data()) - 1),
Expand All @@ -517,12 +523,12 @@ search_space = paradox::ps(
```

Having defined the search space, we are all set for specifying our tuning via the `AutoTuner()` function.
Since we deal with geographic data, we will again make use of spatial cross-validation to tune the hyperparameters\index{hyperparameter} (see Sections \@ref(intro-cv) and \@ref(spatial-cv-with-mlr)).
Since we deal with geographic data, we will again make use of spatial cross-validation to tune the hyperparameters\index{hyperparameter} (see Sections \@ref(intro-cv) and \@ref(spatial-cv-with-mlr3)).
Specifically, we will use a five-fold spatial partitioning with only one repetition (`rsmp()`).
In each of these spatial partitions, we run 50 models (`trm()`) while using randomly selected hyperparameter configurations (`tnr()`) within predefined limits (`seach_space`) to find the optimal hyperparameter\index{hyperparameter} combination [see also Section \@ref(svm) and https://mlr3book.mlr-org.com/optimization.html#autotuner, @becker_mlr3_2021].
In each of these spatial partitions, we run 50 models (`trm()`) while using randomly selected hyperparameter configurations (`tnr()`) within predefined limits (`seach_space`) to find the optimal hyperparameter\index{hyperparameter} combination [see also Section \@ref(svm) and https://mlr3book.mlr-org.com/optimization.html#autotuner, @becker_mlr3_2022].
The performance measure is the root mean squared error (RMSE\index{RMSE}).

```{r 15-eco-22, eval=FALSE}
```{r 15-eco-22}
autotuner_rf = mlr3tuning::AutoTuner$new(
learner = lrn_rf,
# spatial partitioning
Expand All @@ -540,7 +546,7 @@ autotuner_rf = mlr3tuning::AutoTuner$new(

Calling the `train()`-method of the `AutoTuner`-object finally runs the hyperparameter\index{hyperparameter} tuning, and will find the optimal hyperparameter\index{hyperparameter} combination for the specified parameters.

```{r 14-eco-24, eval=FALSE}
```{r 15-eco-24, eval=FALSE}
# hyperparameter tuning
set.seed(0412022)
autotuner_rf$train(task)
Expand All @@ -561,33 +567,29 @@ autotuner_rf$train(task)
saveRDS(autotuner_rf, "extdata/15-tune.rds")
```

```{r 15-eco-26, echo=FALSE, eval=FALSE}
```{r 15-eco-26, echo=FALSE, eval=TRUE, cache.lazy=FALSE}
autotuner_rf = readRDS("extdata/15-tune.rds")
```

An `mtry` of 4, a `sample.fraction` of 0.9, and a `min.node.size` of 7 represent the best hyperparameter\index{hyperparameter} combination.
An RMSE\index{RMSE} of
<!-- `r # round(autotuner_rf$tuning_result$regr.rmse, 2)` -->
0.38
An `mtry` of `r autotuner_rf$tuning_result$mtry`, a `sample.fraction` of `r round(autotuner_rf$tuning_result$sample.fraction, 2)`, and a `min.node.size` of `r autotuner_rf$tuning_result$min.node.size` represent the best hyperparameter\index{hyperparameter} combination.
An RMSE\index{RMSE} of `r round(autotuner_rf$tuning_result$regr.rmse, 2)`
is relatively good when considering the range of the response variable which is
<!-- `r # round(diff(range(rp$sc)), 2)` -->
3.04
(`diff(range(rp$sc))`).
`r round(diff(range(rp$sc)), 2)` (`diff(range(rp$sc))`).

### Predictive mapping

The tuned hyperparameters\index{hyperparameter} can now be used for the prediction.
To do so, we only need to run the `predict` method of our fitted `AutoTuner` object.

```{r 15-eco-27, eval=FALSE}
```{r 15-eco-27, eval=TRUE, cache.lazy=FALSE}
# predicting using the best hyperparameter combination
autotuner_rf$predict(task)
```

The `predict` method will apply the model to all observations used in the modeling.
Given a multilayer `SpatRaster` containing rasters named as the predictors used in the modeling, `terra::predict()` will also make spatial predictions, i.e., predict to new data.

```{r 15-eco-28, eval=FALSE}
```{r 15-eco-28, eval=TRUE, cache.lazy=FALSE}
pred = terra::predict(ep, model = autotuner_rf, fun = predict)
```

Expand Down Expand Up @@ -627,7 +629,7 @@ knitr::include_graphics("figures/15_rf_pred.png")

In case, `terra::predict()` does not support a model algorithm, you can still make the predictions manually.

```{r 15-eco-29, eval=FALSE}
```{r 15-eco-29, cache.lazy=FALSE}
newdata = as.data.frame(as.matrix(ep))
colSums(is.na(newdata)) # 0 NAs
# but assuming there were 0s results in a more generic approach
Expand All @@ -637,7 +639,8 @@ newdata[ind, "pred"] = data.table::as.data.table(tmp)[["response"]]
pred_2 = ep$dem
# now fill the raster with the predicted values
pred_2[] = newdata$pred
identical(values(pred), values(pred_2)) # TRUE
# check if terra and our manual prediction is the same
all(values(pred - pred_2) == 0)
```

The predictive mapping clearly reveals distinct vegetation belts (Figure \@ref(fig:rf-pred)).
Expand Down
18 changes: 15 additions & 3 deletions _12-ex.Rmd
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
```{asis, message=FALSE}
The solutions assume the following packages are attached (other packages will be attached when needed):
```

```{r 12-ex-e0, message=FALSE, warning=FALSE}
library(dplyr)
Expand All @@ -16,6 +18,7 @@ library(tmap)
```

E1. Compute the following terrain attributes from the `elev` dataset loaded with `terra::rast(system.file("raster/ta.tif", package = "spDataLarge"))$elev` with the help of R-GIS bridges (see this [Chapter](https://geocompr.robinlovelace.net/gis.html#gis)):

- Slope
- Plan curvature
- Profile curvature
Expand Down Expand Up @@ -116,9 +119,11 @@ tm_shape(hs, bbox = bbx) +
legend.title.size = 0.9)
```

E4. Compute a 100-repeated 5-fold non-spatial cross-validation and spatial CV based on the GLM learner and compare the AUROC values from both resampling strategies with the help of boxplots (see this [Figure](https://geocompr.robinlovelace.net/spatial-cv.html#fig:boxplot-cv).
E4. Compute a 100-repeated 5-fold non-spatial cross-validation and spatial CV based on the GLM learner and compare the AUROC values from both resampling strategies with the help of boxplots (see this [Figure](https://geocompr.robinlovelace.net/spatial-cv.html#fig:boxplot-cv)).

Hint: You need to specify a non-spatial resampling strategy.
Another hint: You might want to Excercises 4 to 6 in one go with the help of `mlr3::benchmark()` and `mlr3::benchmark_grid()` (for more information, please refer to https://mlr3book.mlr-org.com/perf-eval-cmp.html#benchmarking).

Another hint: You might want to solve Excercises 4 to 6 in one go with the help of `mlr3::benchmark()` and `mlr3::benchmark_grid()` (for more information, please refer to https://mlr3book.mlr-org.com/perf-eval-cmp.html#benchmarking).
When doing so, keep in mind that the computation can take very long, probably several days.
This, of course, depends on your system.
Computation time will be shorter the more RAM and cores you have at your disposal.
Expand All @@ -140,11 +145,14 @@ task = TaskClassifST$new(
# construct learners (for all subsequent exercises)
# GLM
lrn_glm = lrn("classif.log_reg", predict_type = "prob")
lrn_glm$fallback = lrn("classif.featureless", predict_type = "prob")
# SVM
# construct SVM learner (using ksvm function from the kernlab package)
lrn_ksvm = lrn("classif.ksvm", predict_type = "prob", kernel = "rbfdot",
type = "C-svc")
lrn_ksvm$fallback = lrn("classif.featureless", predict_type = "prob")
# specify nested resampling and adjust learner accordingly
# five spatially disjoint partitions
tune_level = rsmp("spcv_coords", folds = 5)
Expand All @@ -167,6 +175,7 @@ at_ksvm = AutoTuner$new(
# QDA
lrn_qda = lrn("classif.qda", predict_type = "prob")
lrn_qda$fallback = lrn("classif.featureless", predict_type = "prob")
# SVM without tuning hyperparameters
vals = lrn_ksvm$param_set$values
Expand Down Expand Up @@ -194,7 +203,10 @@ library(future)
future::plan(list("sequential", "multisession"),
workers = floor(availableCores() / 2))
set.seed(021522)
bmr = benchmark(grid, store_backends = FALSE)
bmr = benchmark(grid,
store_backends = FALSE,
store_models = FALSE,
encapsulate = "evaluate")
# stop parallelization
future:::ClusterRegistry("stop")
# save your result, e.g. to
Expand Down

0 comments on commit 011ba51

Please sign in to comment.