Skip to content

Commit

Permalink
Add JAX API that provides sparse matmul support (2:4 structured spars…
Browse files Browse the repository at this point in the history
…ity)

Usage:
from jax.experimental.sparse import nm
res = nm.nm_spmm(lhs, rhs, nm.nm_pack(mask))

where:
lhs.shape = [M, K/2]
rhs.shape = [K, N]
`mask` has the same shape as `lhs` with boolean type

If batch dimensions are present, the `dimension_numbers` argument has to be set to:
((lhs_contracting_dims, rhs_contracting_dims), (lhs_batch_dims, rhs_batch_dims))

The lowering only works on nVidia GPUs, that provide hardware support for sparse dots.

PiperOrigin-RevId: 627640553
  • Loading branch information
sergeykozub authored and jax authors committed Apr 24, 2024
1 parent b5fdc0d commit aebe82a
Show file tree
Hide file tree
Showing 3 changed files with 458 additions and 0 deletions.
241 changes: 241 additions & 0 deletions jax/experimental/sparse/nm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,241 @@
# Copyright 2024 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""N:M-sparsity associated primitives."""

from jax import core
from jax._src import dispatch
from jax._src.lax.lax import DotDimensionNumbers
from jax._src.lib import gpu_sparse
from jax._src.lib.mlir.dialects import mhlo
from jax._src.typing import Array, DTypeLike
from jax.interpreters import mlir
import jax.numpy as jnp
import numpy as np

# --------------------------------------------------------------------
# nm_spmm

nm_spmm_p = core.Primitive("sparse_dense_matmul")

_supported_input_types = (jnp.int8, jnp.int16, jnp.float16, jnp.bfloat16)
_supported_output_types = (jnp.bfloat16, jnp.float32)


def nm_spmm(
lhs: Array,
rhs: Array,
metadata: Array,
dimension_numbers: DotDimensionNumbers = (((1,), (0,)), (tuple(), tuple())),
sparse_operand_idx: int = 0,
output_dtype: DTypeLike = jnp.bfloat16,
) -> Array:
"""Dot operation where one of the operands has N:M sparsity.
Args:
lhs: An ndarray (first dot operand).
rhs: An ndarray (second dot operand).
metadata: An ndarray with structured sparsity metadata for the contracting
dimension. For 2:4 sparsity it should contain (N=2) two-bit index values
for each (M=4) element group.
dimension_numbers: a tuple of tuples of the form `((lhs_contracting_dims,
rhs_contracting_dims), (lhs_batch_dims, rhs_batch_dims))`.
sparse_operand_idx: index of the sparse operand (0 or 1).
output_dtype: result type.
Returns:
An ndarray dense array containing the result.
"""
return nm_spmm_p.bind(
lhs,
rhs,
metadata,
dimension_numbers=dimension_numbers,
sparse_operand_idx=sparse_operand_idx,
output_dtype=output_dtype,
)


def _calc_groups_per_element(n, m):
group_bits = n * (m.bit_length() - 1) # 4 bits per group for 2:4
return 16 // group_bits


def _validate_dnums(rank, contract, batch, name):
non_contract = tuple(sorted(set(range(rank)) - set(contract + batch)))
if sorted(non_contract + contract + batch) != list(range(rank)):
raise TypeError(f"Incorrect dimension numbers for {name}")
return non_contract


def _validate_metadata(lhs, rhs, metadata, dimension_numbers, index, n=2, m=4):
assert index in (0, 1)
size_factor = n * _calc_groups_per_element(n, m)

sparse = [lhs, rhs][index]
sparse_contract = dimension_numbers[0][index]
if metadata.dtype != np.uint16:
raise TypeError(f"Metadata must be uint16, got {metadata.dtype}")
if sparse_contract[0] != sparse.ndim - 1:
raise TypeError("Contracting dimension must be the minor one")
if metadata.shape[:-1] != sparse.shape[:-1]:
raise TypeError(
"Metadata shape must match the operand shape (except for the"
" contracting dimension)"
)
if metadata.shape[-1] * size_factor != sparse.shape[-1]:
raise TypeError(
f"Metadata must be exactly {size_factor} times less than the"
f" contracting dimension for {n}:{m} structured sparsity (expected"
f" {sparse.shape[-1] // size_factor}, got {metadata.shape[-1]})"
)
if sparse.shape[-1] % size_factor != 0:
raise NotImplementedError("Metadata with padding is not supported")

dense = [lhs, rhs][1 - index]
dense_contract = dimension_numbers[0][1 - index]
a, b = sparse.shape[sparse_contract[0]], dense.shape[dense_contract[0]]
if n * b != m * a:
raise TypeError(
f"Contracting dimension sizes should have {n}:{m} ratio, got {a}:{b}"
)


def _infer_result_shape(lhs, rhs, dimension_numbers):
((lhs_contract, rhs_contract), (lhs_batch, rhs_batch)) = dimension_numbers
if len(lhs_contract) != 1 or len(rhs_contract) != 1:
raise TypeError("Only single contracting dimension is supported")
lhs_dims = _validate_dnums(lhs.ndim, lhs_contract, lhs_batch, "lhs")
rhs_dims = _validate_dnums(rhs.ndim, rhs_contract, rhs_batch, "rhs")
if len(lhs_dims) != 1 or len(rhs_dims) != 1:
raise TypeError("Only single non-contracting dimension is supported")
batch = [lhs.shape[i] for i in lhs_batch]
if batch != [rhs.shape[i] for i in rhs_batch]:
raise TypeError("Batch dimension sizes do not match")
return tuple(batch + [lhs.shape[lhs_dims[0]], rhs.shape[rhs_dims[0]]])


def _nm_spmm_default_lowering(*_args, **_kwargs):
raise NotImplementedError("Sparse N:M matmul is only implemented on GPU")


def _nm_spmm_gpu_lowering(
ctx,
lhs,
rhs,
metadata,
*,
dimension_numbers,
sparse_operand_idx,
output_dtype,
):
assert sparse_operand_idx in (0, 1)
sparsity_descriptor = mhlo.SparsityDescriptor.get(
dimension=dimension_numbers[0][sparse_operand_idx][0], n=2, m=4
)
dot_dnums = mhlo.DotDimensionNumbers.get(
lhs_batching_dimensions=dimension_numbers[1][sparse_operand_idx],
rhs_batching_dimensions=dimension_numbers[1][1 - sparse_operand_idx],
lhs_contracting_dimensions=dimension_numbers[0][sparse_operand_idx],
rhs_contracting_dimensions=dimension_numbers[0][1 - sparse_operand_idx],
)
dot_type = ctx.avals_out[0]
key = ["lhs_sparsity", "rhs_sparsity"][sparse_operand_idx]
kwargs = {key: sparsity_descriptor}
op = mhlo.SparseDotOp(
mlir.aval_to_ir_type(dot_type), lhs, rhs, [metadata], dot_dnums, **kwargs
)
return op.results


@nm_spmm_p.def_abstract_eval
def _nm_spmm_abstract_eval(
lhs, rhs, metadata, *, dimension_numbers, sparse_operand_idx, output_dtype
):
if lhs.dtype not in _supported_input_types:
raise TypeError(f"Unsupported lhs input type: {lhs.dtype}")
if rhs.dtype not in _supported_input_types:
raise TypeError(f"Unsupported rhs input type: {rhs.dtype}")
if output_dtype not in _supported_output_types:
raise TypeError(f"Unsupported output type: {output_dtype}")

res_shape = _infer_result_shape(lhs, rhs, dimension_numbers)
_validate_metadata(lhs, rhs, metadata, dimension_numbers, sparse_operand_idx)
return core.ShapedArray(res_shape, output_dtype)


mlir.register_lowering(nm_spmm_p, _nm_spmm_default_lowering)
dispatch.simple_impl(nm_spmm_p)

if gpu_sparse.cuda_is_supported:
mlir.register_lowering(nm_spmm_p, _nm_spmm_gpu_lowering, platform="cuda")

# --------------------------------------------------------------------
# nm_pack

nm_pack_p = core.Primitive("sparse_pack_nm")


def nm_pack(mask: Array, n=2, m=4) -> Array:
"""Generate metadata tensor for an N:M mask.
Args:
mask: Predicates for the input tensor, where the elements are grouped in the
minor dimension. In each group of size M there should be exactly N true
values, which mark the data elements to keep.
n: Number of non-zero elements in a group.
m: Group size.
Returns:
An ndarray containing only the masked input elements.
"""
return nm_pack_p.bind(mask, n=n, m=m)


def _compress(data, n, m, k):
result = []
expected = n * (k // m)
for i in range(0, len(data), k):
index = tuple(jnp.nonzero(data[i : i + k], size=expected)[0] % m)
value = sum(j * pow(m, i) for i, j in enumerate(index))
result.append(value)
return jnp.array(result, dtype=np.uint16)


@nm_pack_p.def_impl
def _nm_pack_impl(mask, *, n, m):
batch_size = m * _calc_groups_per_element(n, m)
return jnp.apply_along_axis(
lambda x: _compress(x, n, m, batch_size), -1, mask
)


@nm_pack_p.def_abstract_eval
def _nm_pack_abstract_eval(mask, *, n, m):
size_factor = m * _calc_groups_per_element(n, m)
if mask.dtype != bool:
raise TypeError(f"Mask should be bool, got {mask.dtype}")
if mask.shape[-1] % size_factor != 0:
raise TypeError(
f"Inner dimension size should be divisible by {size_factor}, got"
f" {mask.shape}"
)
res_shape = list(mask.shape)
res_shape[-1] //= size_factor
return core.ShapedArray(res_shape, np.uint16)


_nm_pack_lowering = mlir.lower_fun(_nm_pack_impl, multiple_results=False)
mlir.register_lowering(nm_pack_p, _nm_pack_lowering)
dispatch.simple_impl(nm_pack_p)
17 changes: 17 additions & 0 deletions tests/BUILD
Original file line number Diff line number Diff line change
Expand Up @@ -984,6 +984,23 @@ jax_test(
] + py_deps("scipy"),
)

jax_test(
name = "sparse_nm_test",
srcs = ["sparse_nm_test.py"],
disable_backends = [
"cpu",
"gpu",
"tpu",
],
enable_configs = [
"gpu_a100",
"gpu_h100",
],
deps = [
"//jax:experimental_sparse",
],
)

jax_test(
name = "sparsify_test",
srcs = ["sparsify_test.py"],
Expand Down

0 comments on commit aebe82a

Please sign in to comment.