Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
branch: master
Fetching contributors…

Cannot retrieve contributors at this time

82 lines (64 sloc) 3.382 kb
{-# OPTIONS --without-K #-}
open import Types
open import Functions
open import Paths
open import HLevel
open import Equivalences
module FiberEquivalences {i j k} {A : Set i} {P : ASet k} {Q : ASet j}
(f : (x : A) → (P xQ x)) where
-- We want to prove that if [f] induces an equivalence on the total spaces,
-- then [f] induces an equivalence fiberwise
total-map : Σ A P Σ A Q
total-map (x , y) = (x , f x y)
module TotalMapEquiv (e : is-equiv total-map) where
total-equiv : Σ A P ≃ Σ A Q
total-equiv = (total-map , e)
-- The inverse is propositionally fiberwise
base-path-inverse : (x : A) (y : Q x) π₁ ((total-equiv ⁻¹) ☆ (x , y)) ≡ x
base-path-inverse x y = base-path (inverse-right-inverse total-equiv (x , y))
-- And the action of [total-map] on paths is correct on the base path
total-map-fiberwise-on-paths : {u v : Σ A P} (p : u ≡ v)
base-path (map total-map p) ≡ base-path p
total-map-fiberwise-on-paths {u} {.u} (refl .u) = refl _
-- Here is the fiberwise inverse, we use the inverse of the total map and
-- transform it into a fiberwise map using [base-path-inverse]
inv : ((x : A) (Q x P x))
inv x y = transport P (base-path-inverse x y)
(π₂ ((total-equiv ⁻¹) ☆ (x , y)))
app-trans : {x y : A} (p : x ≡ y) (u : P x)
f y (transport P p u) ≡ transport Q p (f x u)
app-trans (refl _) _ = refl _
-- We prove that [inv] is a right and left inverse to [f]
inv-right-inverse : (x : A) (y : Q x) f x (inv x y) ≡ y
inv-right-inverse x y =
app-trans (base-path (inverse-right-inverse total-equiv (x , y)))
(π₂ (inverse (_ , e) (x , y)))
∘ fiber-path (inverse-right-inverse total-equiv (x , y))
inv-left-inverse : (x : A) (y : P x) inv x (f x y) ≡ y
inv-left-inverse x y =
map (λ u transport P (base-path (inverse-right-inverse total-equiv
(x , f x y))) u)
(lemma2 x y)
∘ (! (trans-concat {P = P} (base-path (inverse-right-inverse total-equiv
(x , f x y)))
(! (base-path-inverse x (f x y))) y)
∘ map (λ p transport P p y)
(opposite-left-inverse (map π₁
(inverse-right-inverse total-equiv (x , f x y))))) where
lemma1 : (x : A) (y : P x)
base-path-inverse x (f x y)
≡ base-path (inverse-left-inverse total-equiv (x , y))
lemma1 x y = map base-path (inverse-triangle total-equiv (x , y))
∘ total-map-fiberwise-on-paths _
lemma2 : (x : A) (y : P x)
π₂ ((total-equiv ⁻¹) ☆ (x , f x y))
≡ transport P (! (base-path-inverse x (f x y))) y
lemma2 x y = ! (fiber-path (! (inverse-left-inverse total-equiv (x , y))))
∘ map (λ p transport P p y)
(map-opposite π₁ (inverse-left-inverse total-equiv (x , y))
∘ ! (map ! (lemma1 x y)))
fiberwise-is-equiv : ((x : A) is-equiv (f x))
fiberwise-is-equiv x = iso-is-eq (f x) (inv x) (inv-right-inverse x)
(inv-left-inverse x)
fiberwise-is-equiv : is-equiv total-map ((x : A) is-equiv (f x))
fiberwise-is-equiv = TotalMapEquiv.fiberwise-is-equiv
Jump to Line
Something went wrong with that request. Please try again.